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INTRODUCTION:Earth’s carboncycle involves
large fluxes of carbon dioxide (CO2) between
the atmosphere, land biosphere, and oceans.
Over the past several decades, net loss of CO2

from the atmosphere to the land and oceans
has varied considerably from year to year, equal-
ing 20 to 80% of CO2 emissions from fossil fuel
combustion and land use change. On average,
the uptake is about 50%. The imbalance be-
tween CO2 emissions and removal is seen in
increasing atmospheric CO2 concentrations.
In recent years, an increase of 2 to 3 parts per
million (ppm) per year in the atmosphericmole

fraction, which is currently about 400 ppm,
has been observed.
Almost a quarter of the CO2 emitted by hu-

man activities is being absorbed by the ocean,
and another quarter is absorbed by processes
on land. The identity and location of the ter-
restrial sinks are poorly understood. This ab-
sorption has been attributed by some to tropical
or Eurasian temperate forests, whereas others
argue that these regions may be net sources of
CO2. The efficiency of these land sinks appears
to vary dramatically from year to year. Because
the identity, location, and processes controlling

these natural sinks are not well constrained,
substantial additional uncertainty is added to
projections of future CO2 levels.

RATIONALE: The NASA satellite, the Orbit-
ing Carbon Observatory-2 (OCO-2), which was
launched on 2 July 2014, is designed to collect
global measurements with sufficient precision,
coverage, and resolution to aid in resolving
sources and sinks of CO2 on regional scales.
Since 6 September 2014, the OCO-2 mission

has been producing about
2 million estimates of the
column-averagedCO2dry-
air mole fraction (XCO2)
each month after quality
screening, with spatial
resolution of <3 km2 per

sounding. Solar-induced chlorophyll fluores-
cence (SIF), a small amount of light emitted
during photosynthesis, is detected in remote
sensingmeasurements of radiancewithin solar
Fraunhofer lines and is another data product
from OCO-2.

RESULTS: The measurements from OCO-2
provide a global view of the seasonal cycles
and spatial patterns of atmospheric CO2, with
the anticipated year-over-year growth rate.
ThebuildupofCO2 in theNorthernHemisphere
during winter and its rapid decrease in concen-
tration as spring arrives (and the SIF increases)
is seen in unprecedented detail. The enhanced
CO2 in urban areas relative to nearby back-
ground areas is observedwith a single overpass
of OCO-2. Increases in CO2 due to the biomass
burning in Africa are also clearly observed. The
dense, global, XCO2 and SIF data sets from
OCO-2 are combinedwith other remote sensing
data sets and used to disentangle the processes
driving the carbon cycle on regional scales
during the recent 2015–2016 El Niño event.
This analysis showsmore carbon release in 2015
relative to 2011 over Africa, South America, and
Southeast Asia. Now, the fundamental driver for
the change in carbon release can be assessed
continent by continent, rather than treating the
tropics as a single, integrated region. Small
changes in XCO2 were also observed early in
the El Niño over the equatorial eastern Pacific,
due to less upwelling of cold, carbon-rich water
than is typical.

CONCLUSION: NASA’s OCO-2 mission is col-
lecting a dense, global set of high-spectral reso-
lution measurements that are used to estimate
XCO2 and SIF. The OCO-2 mission data set can
now be used to assess regional-scale sources
and sinks of CO2 around the globe. The papers
in this collection present early scientific find-
ings from this new data set.▪
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El Niño impact on carbon flux in 2015 relative to 2011, detected from Greenhouse Gases
Observing Satellite (GOSAT) and OCO-2 data.OCO-2 uses reflected sunlight to derive XCO2

and
SIF.This shows OCO-2 XCO2

data over North America from 12 August 2015 to 26 August 2015.
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NASA’sOrbiting CarbonObservatory-2 (OCO-2)missionwasmotivated by the need to diagnose
how the increasing concentration of atmospheric carbon dioxide (CO2) is altering the
productivity of the biosphere and the uptake of CO2 by the oceans. Launched on 2 July 2014,
OCO-2 provides retrievals of the column-averaged CO2 dry-air mole fraction (XCO2

) as well
as the fluorescence from chlorophyll in terrestrial plants.The seasonal pattern of uptake
by the terrestrial biosphere is recorded in fluorescence and the drawdown of XCO2

during
summer. Launched just before one of the most intense El Niños of the past century, OCO-2
measurements of XCO2

and fluorescence record the impact of the large change in ocean
temperature and rainfall on uptake and release of CO2 by the oceans and biosphere.

L
arge fluxes of carbon dioxide (CO2) between
the atmosphere, land biosphere, and oceans
(1) occur within Earth’s carbon cycle. The
exchange varies seasonally, with net carbon
uptake into the terrestrial biosphere during

the growing season, especially in the Northern
Hemisphere. In the fall and winter, photosyn-
thesis declines in themid- and high latitudes, and
plant respiration exceeds photosynthesis, return-
ing CO2 to the atmosphere. Continuing emissions
of CO2 from fossil fuels adds carbon to the at-
mosphere, mostly in the Northern Hemisphere
(2). The uptake of CO2 from the atmosphere into
the land and oceans constitutes between 20 and
80% of CO2 emissions from fossil fuel and land
use change (3, 4) and is ~50% on average. The
balance—that is, the fraction of anthropogenic
carbon releasenot reabsorbedby theEarthSystem—
is referred to as the “airborne fraction.” It is man-
ifest in the rising burden of atmospheric CO2,
whose concentration is increasing 0.50 to 0.75%
each year [2 to 3 parts permillion (ppm) per year
increase in the atmospheric mole fraction] (5).
Subtle geographic and temporal variations in

atmospheric concentrations of CO2, of fractions of

a ppm to several ppm of the ambient ~400 ppm
background, reflect the underlying uptake and
release of carbon. These variations provide clues
to the underlying mechanisms that drive differ-
ences in the airborne fraction. Measurements of
the increasing inventory of carbon in seawater
indicate that almost a quarter of the CO2 emitted
by human activities is being absorbed by the
ocean (6), where it contributes to ocean acidifi-
cation. Mass balance demands that another quar-
ter of the CO2 emitted by human activities must
be absorbed by processes on land. The identity
and location of these sinks are less well under-
stood. Some studies have attributed this absorp-
tion to tropical (7) or Eurasian temperate (8)
forests, whereas others indicate that these areas
are just as likely to be net sources as net sinks of
CO2 (9). The efficiency of these natural land and
ocean sinks also appears to vary dramatically from
year to year (3). Because the identity, location,
and processes controlling these natural sinks are
not well constrained, it is not clear how they will
respond in the future (7). Understanding these
mechanisms and their dependence on climate
and atmospheric CO2 levels is central to under-
standing how the carbon cycle may amplify or
mitigate future climate change (3, 7, 10–13).

Measuring CO2 from space with OCO-2

The international network of ground-based in situ
greenhouse gasmeasurement stations provides a
long-term and precise (~0.07 ppm) record of the
atmospheric CO2 concentration at ~147 locations
across the globe (14, 15). Few measurements are
obtained in tropical regions, in urban settings, or
in Asia. The NASA satellite, the Orbiting Carbon
Observatory-2 (OCO-2), which was launched

from Vandenberg Air Force Base in California on
2 July 2014, is designed to collect globalmeasure-
ments with sufficient precision, coverage, and
resolution to aid in resolving sources and sinks
on regional scales. After completing a series of
spacecraft check-out activities and orbit-raising
maneuvers, on 3 August 2014, it joined the front
of the Afternoon Constellation (A-Train) (16),
which consists of six satellites orbiting at an al-
titude of 705 km. In this 98.8-min orbit, OCO-2
samples at a local time of about 1:30 p.m., and it
has a set of 233 orbit paths that repeat in 16-day
cycles. The OCO-2 sampling strategy repeats in
32-day cycles. Since 6 September 2014, the OCO-2
instrument has been routinely returning almost
1 million soundings each day over the sunlit hem-
isphere. This measurement concept was devel-
oped in the late 1990s, but this type of data has
only been collected since 2014. The OCO-2 mis-
sion is a replacement for the original OCO in-
strument and spacecraft that were lost in a failed
launch in February 2009; only small modifica-
tions to replace obsolete parts and to adapt to a
different launch vehicle were required.
The OCO-2 spectrometers collect eight spa-

tially resolved radiance spectra of reflected sun-
light in three narrow wavelength bands three
times per second, with resolving power (Dλ/λ) of
~17,000 (Fig. 1) (17–19). The oxygen A-band (cen-
tered at ~765 nm) provides a sensitive measure
of the atmospheric path length and is thus an
accurate indicator of clouds and surface eleva-
tion. The radiance at two distinct CO2 absorption
bands (1.61 and 2.06 mm) provides sensitivity to
CO2. The column-averaged atmospheric CO2 dry-
air mole fraction (XCO2), or the total column of
carbon dioxide normalized by the column of dry
air, is derived from these spectra using a physics-
based retrieval method (20–22). The sensitivity
of the measurement is fairly uniform through-
out the troposphere and lower stratosphere and
varies with solar geometry and surface (23). De-
tails of the instrument calibration and observa-
tory operation are reported in Crisp et al. (19),
and the data processing strategy is described
by Eldering et al. (24).
A set of eight measurements are made along a

narrow ground track as the spacecraft travels
about 2.25 km along its orbit track, providing
spatial resolution of <3 km2 per sounding.XCO2

is retrieved only when there is sufficient light
(solar zenith angles less than 85°) andwhen there
are no optically thick clouds (25). OCO-2 returns
roughly 2 million XCO2 estimates each month that
pass quality screening (Fig. 2), for a yield of about
6% of the total soundings.
Systematic biases in the OCO-2 XCO2 estimates

must beminimized to accurately resolve the small
spatial and temporal variations in this quantity.
The bias correction, designed to address known
systematic errors, takes advantage of the high
density of soundings gathered over regions with
minimal variability in XCO2 (such as contiguous
data collected in small areas and over the South-
ern Hemisphere oceans) (26, 27). To relate the
OCO-2 XCO2 estimates to the standard CO2 scale
set by the international CO2 in situ network, we
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use the transfer standard provided by a special-
ly designed ground-based network of atmospher-
ic observatories that comprise the Total Carbon
Column Observing Network (TCCON) (28). Ex-
tensive comparisons have been made between
OCO-2 satellite measurements coincident with
the TCCON measurements (29, 30). After cor-
recting biases, the OCO-2 XCO2 retrievals have
median differences [for collections of >100 sound-
ings] of less than 0.5 ppm and root-mean-square
differences that are typically below 1.5 ppm (30).
Simulation studies conducted before the launch
of OCO estimated that large climate anomalies,
like the 2003 European summer drought, which
created a carbon anomaly of 0.5 gigatons C (31),
would be detected by OCO, whereas scientific
questions about smaller changes (on the order
of 0.01 gigatons C) would not be addressed by
OCO (32). The systematic biases from OCO-2 are
consistent with the prelaunch design studies. As
discussed in Chatterjee et al. (33), concentration
changes of 0.5 ppm regionally can be detected
with the OCO-2 measurements.
The interpretation of OCO-2 measurements

is enhanced by measurements from the other
Earth-observing satellites. The availability of mea-
surements of trace gases such asnitrogen dioxide
(NO2) from the Ozone Monitoring Instrument
(OMI), carbonmonoxide (CO) from theMeasure-

ments of Pollution in the Troposphere (MOPITT)
experiment, and many products from the Mod-
erate Resolution Imaging Spectroradiometer
(MODIS), have been used to disentangle the in-
fluence of complex and variable processes that
contribute to the global carbon cycle (34–37).

Measuring plant fluorescence from
space with OCO-2

Measurements of solar-induced chlorophyll fluo-
rescence (SIF) from satellites offer insight into
terrestrial gross primary productivity (GPP), the
gross uptake of CO2 through photosynthesis (38).
The SIF signal, a small amount of light emitted
during photosynthesis, is detected in remote
sensingmeasurements of radiance within solar
Fraunhofer lines. Retrieval methods were devel-
oped in recent years with the Japanese Green-
house Gases Observing Satellite (GOSAT) Thermal
andNear-Infrared Sensor for CarbonObservation–
Fourier Transform Spectrometer (TANSO-FTS),
Global OzoneMonitoring Experiment-2 (GOME-2)
onboard MetOp-A, and OCO-2 measurements,
and its potential for quantifying GPP is being as-
sessed (38–42). Although the SIF signal is quite
small—enhancements are typically less than 2%
of the reflected sunlight (43)—the high signal-
to-noise spectra fromOCO-2 enable precise SIF
measurements at high spatial resolution (37).

Typically, the random component of the retrieval
error varies between 0.3 and 0.5 Wm−2 mm−1 sr−1

(15 to 25% of typical peak values of SIF) in the
757-nm fitting window (44), but the errors are
substantially reduced by a factor of 1=

ffiffiffi

n
p

if single
retrievals (from individual soundings) are binned
to griddedmaps (n is the number of soundings per
grid cell) at certain temporal averagingdomains. In
a companion paper in this issue, Sun et al. (37)
describe OCO-2 SIF characteristics in detail and
illustrate mechanistic connections between SIF
and GPP. They show that when OCO-2 data are
compared with GPP from flux tower measure-
ments, well matched in spatial scale, they have
correlation coefficients ranging from 0.89 to 0.99,
with similar slopes for three different biomes.
Earlier studies that used sparse data sets that
had to be interpolated over time indicated biome-
specific linear relationships.

Observing the carbon cycle from space
with OCO-2

Maps of theXCO2 data collected over three 32-day
periods illustrate the most robust features of the
carbon cycle (Fig. 2). The March/April 2015 dis-
tribution is characterized by enhanced XCO2 in
the Northern Hemisphere. During winter, up-
take by plants is minimal while the breakdown
or decay of plant material continues. As a result
of this, together with the continual emissions
from fossil fuel burning (e.g., elevatedXCO2over
China, Europe, and the southeast United States),
XCO2 reaches a seasonalmaximum in theNorthern
Hemisphere during April just before temperatures
increase enough to reawaken the biosphere from
the low activity of winter. As illustrated in Fig. 3,
active photosynthesis is manifest in the strong
signal of plant fluorescence across the vegetated
springtime Northern Hemisphere.
By June/July 2015, the distribution of XCO2

and fluorescence observed by OCO-2 has changed
dramatically compared with March/April (Fig. 2
for XCO2). Although fossil fuel emissions conti-
nue, the uptake of CO2 by the terrestrial bio-
sphere [e.g., figure 1 of (37)] has removed a large
amount of CO2 from the atmosphere over much
of the Northern Hemisphere; the latitudinal gra-
dient of XCO2 has reversed. In 2015, OCO-2 ob-
servations indicate that the springtime drawdown
began in Europe and propagated eastward across
Asia and North America over the months of May
and June. In some regions,XCO2declined by 7 ppm
in only 1 month. Movie 1 illustrates the CO2 from
an atmospheric analysis, a product that merges
OCO-2 observations with a high-resolution global
model using a technique called data assimilation
(45). The incorporation of OCO-2 observations
corrects errors in the model’s prediction of at-
mospheric CO2 concentrations, and the model
provides additional information about the verti-
cal distribution of the gas and fills gaps in cloudy,
data-sparse regions. SpanningMarch2015 through
the end of July 2015, the rapid reductions in CO2

concentrations in theNorthernHemisphere dur-
ing June are evident in movie 1, as are the com-
plex pathways that transport CO2 through the
atmosphere, across oceans and continents.
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Fig. 1. OCO-2 detects sunlight that has traveled through the atmosphere and is reflected back
to space. The sunlight is partially absorbed by the O2 A-band (A) and the weak and strong CO2

bands centered near 1.61 (B) and 2.06 μm (C).
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By March/April 2016, the distribution of XCO2

is similar to the year before, but with an in-
creased concentration of ~3.5 ppm globally. A
substantial fraction of this increase reflects emis-
sions from fossil fuel burning. Direct evidence for

these emissions includes the 1- to 3-ppm enhance-
ments in XCO2 over the regions with intense in-
dustrial activity. For example, Schwandner et al.
(46) observe a local, persistent enhancement of 4
to 6 ppm in XCO2 between OCO-2 measurements

across the Los Angeles basin and the measure-
ments that extend to the desert region to the
north. The basin provides an ideal setting for such
analyses, with a large urban population and ac-
companying emissions, and mountains to the
north of the city, which trap air in the basin and
provide a clear demarcation from the background
region to the north. This is illustrated in Fig. 4 and
in Schwandner et al. (46). More broadly, the spa-
tial enhancements of XCO2 due to the burning of
fossil fuel across the Northern Hemisphere are il-
lustrated in Fig. 5. Hakkarainen et al. (34) com-
binedOCO-2XCO2 measurementswith space-based
observations of NO2 from the OMI instrument,
as well as the Open-Source Data Inventory for
Anthropogenic CO2 (ODIAC) emissions inven-
tory (47). Using cluster analysis, they identified
XCO2 enhancements clearly linked to fossil fuel
combustion, which are shown in Fig. 5.
Another large signal seen in the OCO-2 data is

the effect of seasonal biomass burning in Africa
on the XCO2concentrations (Fig. 6). CO2 accounts
for more than 90% of annual global fire carbon
emissions in current emission inventories (48),
and fire emissions are typically enhanced during
El Niño periods. These emissions have typically
been estimated frommodels rather than direct
observations. Uncertainties in the extent of the
burnedarea, thebiomassdensitywithin theburned
area, and the fraction of biomass emitted as CO2,
CO, and other species compromise the accuracy
of the estimates (49–51). Top-down constraints on
pyrogenic CO2 could therefore provide a much-
needed check on fire emissions estimates.
OCO-2 measurements were used to estimate

the CO2 emissions from Indonesian fires in 2015
(35). Indonesia experienced an exceptional num-
ber of fires in 2015 due to El Niño–related drought
and slash-and-burn agricultural practices. Emis-
sions databases such as the Global Fire Assim-
ilation System (GFASv1.2) and the Global Fire
Emission Database (GFEDv4s) estimated the CO2

emission to be ~1100 megatons CO2 between
July and November 2015. Heymann et al. (35)
analyzed OCO-2XCO2 observations collected over
Indonesia during this period using two different
modeling approaches. They estimate pyrogenic
CO2 emissions near 731 ± 271 megatons CO2. This
estimate is 37 and 31% lower than those in the
GFASv1.2 and GFEDv4s emissions databases.
Interestingly, the OCO-2 based estimates are con-
sistent with pyrogenic CO2 emissions estimates
based on CO measurements from the MOPITT
instrument on the Terra platform and fire radia-
tive power estimates from Terra and AquaMODIS
(692 ± 213megatons CO2) (52). Hakkarainen (34)
also clearly sees the enhancedXCO2 from biomass
burning in his anomaly analysis, although their
results are aggregated over time, so the season-
ality is not reported. The Northern Hemisphere
African biomass emissions peak in January each
year (48, 53) and have a duration of 4 to 5months.
Figure 6 illustrates the growth phase of that cycle
for 2 years of OCO-2 measurements.
Time series of the OCO-2 XCO2 estimates clearly

show the seasonal cycles and the latitudinal dif-
ferences in those seasonal cycles that are similar
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Fig. 2. Maps of OCO-2 XCO2
. Maps of OCO-2 XCO2

(bias corrected with quality flags applied) over
32-day periods in (A) March/April 2015, (B) June/July 2015, and (C) March/April 2016. The
measurement area of each sounding has been exaggerated for visibility on a global scale.
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to the record collected by ground-based networks.
Figure 7 shows weekly average XCO2 values for the
South Pacific, the ocean around Hawaii, and a
region over Europe and Asia. The South Pacific
has a relatively flat seasonal cycle, because there
are limited emissions and limited uptake by the
terrestrial biosphere in this region. AroundHawaii,

there is a stronger seasonal cycle, because it is
influenced by the Northern Hemisphere spring-
time removal of CO2 from the atmosphere by the
terrestrial biosphere and the growth in atmo-
spheric CO2 in thewinter, when human emissions
are not balanced by natural removal mechanisms.
Over Europe and Asia, there is a similar seasonal

cycle, but the springtime XCO2 reductions are
more rapid, because these measurements are
where the terrestrial biosphere is active.

The impact of the 2015–2016 El Niño on
the carbon cycle

Themassive 2015–2016ElNiño contributed to the
anomalously large XCO2 growth rate. The OCO-2
mission started approximately 6 months before
the beginning of the El Niño. The 3 ppm global
increase in XCO2 recorded during this El Niño is
one of the largest ever observed (4, 54), consistent
with previous research that has shown that global
CO2 increases anomalously during and in the year
after large El Niños (55–59).
Diagnosis of the specific mechanisms respon-

sible for the large CO2 growth rates (e.g., the rel-
ative importance of changes in the ocean, the
humid tropics, and the semiarid tropics), has
been challenging due to a lack of observations
of CO2 in those regions (60). Data from theOCO-2
mission thus provides a window into the re-
sponse of the ocean and land carbon cycle to this
large-scale climate perturbation (7). Leveraging
the broad coverage of OCO-2 data, Chatterjee et al.
(33), Liu et al. (36), Heymann et al. (35), and Sun
et al. (37) report on the quantification of CO2

emissions sources and insights into the carbon
cycle response to El Niño. These studies examine
the role of ocean outgassing, drought, and fire
as contributors to the increased growth rate of
atmospheric CO2.
Chatterjee et al. (33) used OCO-2 XCO2 obser-

vations to study the temporal evolution of XCO2

anomalies over the tropical Pacific Ocean. Using
a combination of data from OCO-2, the TAO
(Tropical Atmosphere Ocean) moored buoy ar-
ray network (61) andMOPITT, they identify two

Eldering et al., Science 358, eaam5745 (2017) 13 October 2017 4 of 8

Fig. 3. The OCO-2 SIF retrieval at 757 nm on 1° by 1° grid for the spring (i.e., the mean of April-May-June for 2015 and 2016).

Fig. 4. OCO-2 XCO2
measurements across the Los Angeles basin and into the desert north of

Los Angeles taken during one overpass on 8 September 2015.The measurement swath is 10 km
across. Two special sets of measurements taken for validation purposes—one at the California
Institute of Technology and one at the Armstrong Flight Research Center—are also displayed.
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distinct phases in the response of atmospheric
CO2—an early response driven by reduction in
CO2 outgassing from the tropical Pacific Ocean
followed by a lagged and much larger response
driven by increased fluxes from the tropical land.
To further elucidate the relationship between
regional climate forcing and tropical biosphere
carbon response, Liu et al. (36) contrast the 2015
carbon responses to 2011, which was a weak La
Niña year with near-average temperature and
precipitation over the tropical continents. They
quantify net biosphere exchange (NBE) (i.e., the
combined effects of respiration, fire, and GPP)
for 2015 and 2011, respectively, by assimilating
XCO2observations from OCO-2 and GOSAT into
theNASACarbonMonitoring System Flux (CMS-
Flux) inversion system. To further partition the
NBE into GPP, biomass burning, and residual
respiration carbon fluxes, they optimized GPP
and biomass burning fluxeswith SIF fromGOSAT
(62) and CO observations from MOPITT (63),
respectively.
The impacts of El Niño on the carbon cycle

are complex (33, 36): Temperature and rainfall
changes in Southeast Asia, Africa, and South
America are distinct, resulting in diverse carbon
cycle impacts. XCO2 decreased over the tropical
Pacific Ocean, but flows of carbon were larger to
the tropical atmosphere over all three continents.
Over South America, dry conditions reduced
GPP, resulting in a net increase in the flux of
carbon to the atmosphere. Over Africa, higher
atmospheric temperatures drove increased respi-
ration (Reco) but near normal GPP, increasing
carbon flux to the atmosphere. Southeast Asia
experienced higher temperatures and dry con-
ditions, increased vulnerability to fire from land

use, and increased emissions of CO2. See Liu
et al. (36) for additional discussion.

OCO-2 measurements in context of
other remote sensing data

OCO-2 is not the first instrument tomeasure CO2

from space, but its data have unique character-
istics relative to existing data sets. Space-based
measurements of CO2 have been made in the
thermal infrared beginning in the early 2000s
with the Atmospheric Infrared Sounder (64) and
are now being made by several other instru-
ments. However, extracting surface source/sink
information from these measurements has been
largely unsuccessful, owing to their low sensitiv-
ity to near-surface CO2, which provides the most
information on surface exchange (65, 66). The
SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) in-
strument made near-infrared measurements of
column CO2 from 2002 to 2012, although with
relatively coarse spatial resolution (30 × 60 km2)
and lower sensitivity (4 to 8 ppm) (67–70). The
Japanese GOSATmission launched in 2009 (71, 72)
was the first mission whose primary goal was to
measure greenhouse gases (carbon dioxide and
methane) from space. The GOSAT mission has
fostered considerable international scientific col-
laboration, leading to a deeper understanding of
the utility of total column CO2 measurements
from space. The GOSAT CO2 observations have
formed the backbone of a number of important
scientific studies. The primary limitation of the
GOSATmeasurement scheme is its low sounding
density, with a single, 85-km2 measurement per
250 km, resulting in fewer than 1000 cloud-free
soundings each day.

The CO2 seasonal cycle has also been studied
with SCIAMACHYandGOSATdata (e.g., 73, 74-76).
The GOSAT measurements have been used to
characterize a number of relatively large dis-
turbances to the carbon cycle, including reduced
carbon uptake in 2010 due to the Eurasia heat
wave (77), larger than average carbon fluxes in
tropical Asia in 2010 due to above-average tem-
peratures (78), and anomalous carbon uptake in
Australia (79). Parazoo et al. (62) usedGOSATXCO2

and SIF estimates to better understand the car-
bon balance of southern Amazonia. Ross et al. (80)
used GOSAT data to obtain information on wild-
fire CH4:CO2 emission ratios. Buchwitz et al. (67)
provide an excellent overview of the SCIAMACHY
and GOSAT remote sensing data sets.
The OCO-2 measurements have a higher spa-

tial resolution than GOSAT and SCIAMACHY
and include a larger number of measurements
per day. OCO-2 was designed as a sampling mis-
sion, not a mapping mission, so it only samples a
small fraction of the globe each day. Although it
would be desirable to have high-precision mea-
surements over the whole globe daily, current
limitations in remote sensing create a trade-off
in sampling coverage and measurement preci-
sion (81), and OCO-2 has been designed to have
sparse sampling and high precision (18, 82). This
trade-off allowsOCO-2 to capture the data required
for assessing regional fluxes of CO2 across the globe
(32, 82). Additionally, OCO-2 XCO2 high precision
allows the detection of small changes in regional
concentrations (33), including the observations,
from a single overpass, of gradients across cities
that themeasurement path happens to cross (46).
Similarly, SIFhas beenderived fromSCIAMACHY

(41, 83), GOME-2 (84) and GOSATmeasurements
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Fig. 5. Maps of the OCO-2 XCO2
anomaly (mean in each grid box of the

daily anomaly from the regional median) in 1° by 1° cells between Sep-
tember 2014 and April 2016.The anomalies are only plotted for the regions
identified as clusters of enhancements due to fossil fuel burning in (34).
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(39, 84) as well as OCO-2. Although these data
sets span a longer period of time than OCO-2,
the OCO-2 SIF product has a smaller footprint
(<3 km2 forOCO-2 versus 2400 km2 for GOME-2,
1800km2 for SCIAMACHY, and85km2 forGOSAT)
and a higher signal-to-noise ratio (44, 85). As
discussed in detail in Sun et al. (37), the OCO-2
SIF data provide higher single-sounding preci-
sion then the other data sets, with reduced spa-
tial coverage of the globe. These characteristics
are valuable for improving our mechanistic un-
derstanding, because the OCO-2 data spatial
resolution is well matched to ground-basedmea-
surements and the scales of heterogeneity in
many ecosystems.
Looking forward, NASA’s current plan calls

for continued development of the space-based
CO2 and SIF record with OCO-3, which will be
deployed on the International Space Station (ISS)
no earlier than the fall of 2018. Although the
OCO-2 and OCO-3 instruments are very similar
(the core spectrometer used by OCO-3 was the
flight spare for OCO-2), differences in the OCO-2
and ISS orbits and observing capabilities will fur-
ther enhance the value of simultaneous measure-
ments from these two sensors. In particular, from
its near-polar, sun-synchronous orbit, OCO-2 can
sample most of the globe but can only measure
XCO2 and SIF at ~1:30 p.m. local time. In contrast,
although the moderate inclination of the ISS or-
bit restricts OCO-3 coverage to ±51° latitude, the
orbit precesses in time, enabling XCO2 and SIF
observations from dawn to dusk. Finally, al-
thoughOCO-2 can collect targetedmeasurements
over only one to two sites each day, OCO-3 will
use its fast-pointing mechanism to acquire thou-
sands of measurements over up to a hundred
70 km by 70 km targets each day. Combining the
OCO-2 and OCO-3 data sets will therefore enable
carbon cycle investigations that require uniform
sampling of the globe, as well as sampling of
the diurnal cycle or compact sources, such as
megacities.
The combined OCO-2/OCO-3 climate data re-

cord will provide a valuable baseline for the Geo-
stationary Carbon Cycle Observatory (GeoCARB)
mission, which was recently selected by the NASA
Earth Ventures Program (86). GeoCARB will
be NASA’s first greenhouse gas sensor in geo-
stationary orbit. If all goes as planned, GeoCARB
will be ready for launch no earlier than 2021. It
will deployed at 85°W longitude, where it can
produce continuous global maps of XCO2, XCH4,
and XCO over the North and South American
continents. Internationally, a number of near-
infrared CO2 measurements are beginning or
planned, including China’s TanSat, which was
launched in December 2016 (87, 88), the Japanese
GOSAT-2, planned to launch in 2018 (89), and the
French Space Agency’s (Centre National d’Etudes
Spatiales) MicroCARB, with a planned launch in
2020 (90).
The record of SIF measurements will also

expand greatly in the future. Sensors that will
return SIF measurement include OCO-3, TROPO-
sphericMonitoring Instrument (TROPOMI) (91),
ESA FLEX (92), GOSAT-2, MicroCARB, and

GeoCARB. As with CO2, these new missions will
both extend the SIF record in time and provide
new capabilities, such as sampling over a range
of daylight hours and with a range of spatial
resolutions.

Conclusions

The dense, global, XCO2, and SIF data sets from
GOSAT and OCO-2 are being combined with
data from MODIS, OMI, and MOPPIT and used
to disentangle the processes driving the carbon

cycle on regional scales. The accompanying re-
ports in this collection use these data to discrim-
inate the impacts of fossil fuel emissions, fires,
and the 2015–2016 El Niño on the atmospheric
CO2 budget. A longer data record is needed to
document the carbon cycle’s response as the trop-
ical climate relaxes back to its background state.
An even longer record will be needed to fully
characterize the interactions between the present-
day carbon cycle and climate system. This in-
formation is crucial for the development and
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Fig. 7. Time series of weekly OCO-2 XCO2
averages for regions around Hawaii, the Southern

Pacific Ocean, and EuroAsia, showing the contrast of the seasonal cycle in the Northern and
Southern Hemispheres that is clearly observed by OCO-2. The data have bias correction and
quality screening applied.

Fig. 6. Maps of OCO-2 XCO2
over sub-Saharan Africa for the beginning of the biomass burning

seasons of 2015 and 2016, showing the rapid regional increase in XCO2
.The data have been

averaged to 2° by 2° bins each month, after bias correction and quality screening were applied.
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validation of improved coupled carbon-climate
models for predicting the carbon cycle’s response
to awarming climate. Fortunately, as OCO-2 com-
pletes its 2-year prime mission and begins its first
extended mission, the spacecraft and instrument
remain healthy, and data products with improved
accuracy and coverage are in development.
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