

MEASURING EARTH'S CARBON CYCLE

By Jesse Smith

ne of the crowning achievements of modern environmental science is the Keeling curve, the detailed time series of the concentration of atmospheric carbon dioxide (CO₂) begun in 1958 that has enabled deep insights into the mechanisms of global climate change. These measurements were difficult to make for most of their 60-year history, involving the physical collection of air samples in flasks at a small number of sites scattered strategically around the globe and the subsequent analysis of their CO₂ inventories in a handful of laboratories throughout the world. The Orbiting Carbon Observa-

tory-2 (OCO-2) mission was designed to circumvent those limitations by providing a platform with which atmospheric CO_2 can be measured spectrally from space over large geographic areas, thereby offering an unprecedented capability to study, in great detail, the processes that affect the concentration of the gas over a variety of spatial and temporal scales. The satellite can also measure solar-induced fluorescence, a proxy for photosynthesis, which provides valuable information about the biological processes that affect atmospheric CO_2 .

In this issue, a collection of Research Articles presents the initial results from OCO-2, covering the detection of CO_2 emissions from specific point sources; measurements of CO_2 variations associated with El Niño, on land and at sea; and solar-induced fluorescence measurements of photosynthesis for determining gross primary production by plants. With its impressive collection of observational capa-

The OCO-2 satellite can measure photosynthesis, as well as the amount of CO₂ in the atmosphere, and so will shed new light on the carbon cycle.

bilities, OCO-2 will enable measurements of atmospheric CO_2 to be made with sufficient precision, resolution, and coverage to faithfully characterize its sources and sinks globally over the seasonal cycle, a long-standing goal in atmospheric and climate science.

Published by AAAS

Measuring Earth's carbon cycle

Jesse Smith

Science **358** (6360), 186-187. DOI: 10.1126/science.358.6360.186

ARTICLE TOOLS

http://science.sciencemag.org/content/358/6360/186

RELATED CONTENT http://science.sciencemag.org/content/sci/358/6360/eaam5745.full http://science.sciencemag.org/content/sci/358/6360/eaam5747.full http://science.sciencemag.org/content/sci/358/6360/eaam5776.full http://science.sciencemag.org/content/sci/358/6360/eaam5782.full http://science.sciencemag.org/content/sci/358/6360/eaam5782.full http://science.sciencemag.org/content/sci/358/6360/230.full

PERMISSIONS

http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title *Science* is a registered trademark of AAAS.