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We used Argo float drift data to estimate average ocean currents at 1000 dbar depth
from early 2000 to early 2010. Our estimates cover the global oceans, except for mar-
ginal seas and ice-covered regions, at a resolution of 1 degree in latitude and longi-
tude. The estimated flow field satisfies the horizontal boundary condition of no flow
through the topography, and is in geostrophic balance. We also estimated the uncer-
tainty in the average flow field, which had a typical magnitude of 0.03 ms–1. The
uncertainty is relatively large (>0.03 ms–1 in both the zonal and meridional direc-
tions) near the Equator and in the Southern Ocean. The array bias, which is the bias
due to the horizontal gradient in the spatial density of the float data, is generally
negligible, with an average magnitude outside the equatorial region of 0.007 ms–1,
becoming relatively large (>0.01 ms–1) only near the coastal regions. The measure-
ment uncertainty is assumed to be spatially uniform and includes errors due to the
Argos positioning system, internal clock drift, unknown surface drift before submerg-
ing or after surfacing, and unknown drifts during ascent and descent between the
surface and the parking depth. We found that the overall uncertainty was not sensi-
tive to the assumed value of the measurement uncertainty (εεεεεm)1/2 when (εεεεεm)1/2 < 0.01
ms–1 but it increased with (εεεεεm)1/2 for (εεεεεm)1/2 > 0.01 ms–1.

then transmitting data through the satellite system, pri-
marily the System Argos satellites, while at the surface.
The approach used by Lebedev et al. (2007) to estimate
the drift at the parking level is the simplest one, where
the velocity is given by the distance divided by the time
between the last position fix before descending and the
first position fix after ascending.

Using a subset of the Lebedev et al. (2007) data from
the parking level, we have estimated the quasi-global
mean flow field at 1000 dbar over the period from 2000
to 2010. In this paper, we investigate various uncertain-
ties in the mapping process. The extreme variability in
the ocean means that heavy smoothing both in time and
space is required. We followed the method described by
Davis (1998, 2005), who derived the mean flow using
the drift data from the ALACE floats (Davis et al., 1992),
the predecessor of the Argo floats. The strengths of this
method are that it is statistically optimal (it is objective
mapping using the Gauss-Markov theorem), that the flow
is in geostrophic balance, and that the flow satisfies the
horizontal boundary condition of no normal flow at the
horizontal boundaries.

1.  Introduction
Argo floats revolutionised observational oceanogra-

phy with their quantity of the hydrographic data they col-
lected. In addition to hydrographic data, Argo floats pro-
vide data for estimating current velocities at the parking
level through the positions at the surface fixed by satel-
lites. The velocity information provides a solution to the
long-standing problem in physical oceanography of esti-
mating the unknown integration constant of the thermal
wind relationship.

Lebedev et al. (2007) compiled the Argo satellite
fixes to provide a raw data set of the velocities both at
the parking level and at the surface. Argo floats are de-
signed to repeat a cycle of descending from the surface
to a parking level, drifting following a preset pressure or
density, ascending to the surface while measuring
hydrographic data such as salinity and temperature, and
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The resultant global map of the flow has many po-
tential applications, such as estimating absolute veloci-
ties from hydrography, constraining box inverse models
(e.g., Wijffels et al., 2001), and evaluating the perform-
ance of numerical models. The product is publicly avail-
able online from the JAMSTEC’s Argo website (http://
www.jamstec.go.jp/ARGO/argo_web/G-YoMaHa/
index_e.html).

2.  Types of Uncertainty in Drift Data Mapping
This study focuses on the uncertainties in the global

mapping of drift data. In this section, we review the un-
certainties involved in estimating the mean flow field
using Argo floats.

2.1  Array bias
The array bias is the bias resulting from the horizon-

tal gradient in the spatial density of float data. Davis
(1991) discussed fundamental issues in characterising
lateral mean oceanic transport using current-following
floats. The key quantity is the eddy diffusivity κ estimated
from single particle statistics,

κ jk j kt v t t r t t tx x x, , , ,( ) = − ′ ( ) ′ −( ) ( )0 0 0 0 1

where the subscripts i, j, k denote the spatial coordinates
in the east, north, and vertical directions, respectively,
the angle brackets are Eulerian ensemble (or time) aver-
aging, v(t|x, t0) is the Lagrangian velocity at time t of a
particle that passes through position x at time t0 with the
prime symbol denoting departure from the Lagrangian
mean and, similarly, r(t|x, t0) is the position at time t of a
particle that passes through position x at time t0. The
diffusivities for other components (e.g., κii, κij ...) can be
defined in the same manner. The diffusivity κ is a func-
tion of time, but generally oceanic flows are so turbulent
that after some time lag T0, the velocity mean product
〈vj′(t0|x, t0)vk′(t0 – t|x, t0)〉 vanishes. Then for time inter-
vals longer than T0,

κ κjk jktx x, .( ) → ( ) ( )∞ 2

When estimating the Eulerian mean velocity U in a
region A, the velocities sampled in A are averaged over a
time interval much longer than T0, during which the mean
particle density is approximately steady. The estimate is
known to be biased (equation (2.17) of Davis (1991));
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where ũ  is the estimated average velocity, U(x) is the
true mean, and C(x) is the ensemble-space average of the
particle density, i.e.,

C t n
n

x x r( ) = − ( )[ ] ( )∑δ , 4

where δ is the Dirac delta function, and n is a shorthand
for the labelling coordinates (x, t0).

The second term of the right-hand side of Eq. (3) is
the array bias. The array bias can be corrected using esti-
mated diffusivity κ 

∞ and float density C(x). The diffu-
sivity estimates are also subject to an array bias, but the
magnitude is difficult to estimate (Davis, 1991). We have
neglected the array bias in our diffusivity estimates.

2.2  Measurement uncertainties
Davis (1991) also discussed potential uncertainties

such as molecular effects, bias and dispersion caused by
internal waves, and low-frequency vertical motion. He
found that all of these are negligible when estimating
large-scale mean flows. These uncertainties apply to iso-
baric floats in general, but the following uncertainties are
known to apply specifically to Argo floats. First, posi-
tioning error by the Argos satellite system is generally
less than 1000 m (Ichikawa et al., 2001), which amounts
to about 1 × 10–3 ms–1 for velocity estimation over 10
days. Second, clock drift exists for the internal clock in
some floats. Park et al. (2005) found a systematic drift
rate of about 370 s year–1 in four floats deployed in the
Sea of Japan, which is negligible when calculating the
averaged velocity over 10 days, but the clock time can
suddenly jump which could cause substantial error in the
resultant velocity estimate. Third, unknown surface drift
before submerging and after surfacing can be a signifi-
cant source of error because surface flows are generally
much stronger than the deeper flows and several hours
can elapse before the satellite communication starts after
surfacing (Ichikawa et al., 2001). Last, unknown drifts
during ascent and descent between the surface and the
parking depth can also potentially cause significant er-
rors. Assuming a linear shear between the surface and
the parking depth, Lebedev et al. (2007) estimated the
mean magnitude of this error to be 53 × 10–3 ms–1, which
is likely to be an overestimate, because the vertical pro-
file of the horizontal flow is more surface intensified than
linearly sheared. Park et al. (2005) estimated that this error
is less than, or at most comparable, to the surface drift
error. A similar conclusion was reached by Ichikawa et
al. (2001), who estimated the surface drift error at 0 to
12 × 10–3 ms–1 and the ascending/descending drift error
at 1 to 13 × 10–3 ms–1 for four Argo floats.
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Some of these errors could be corrected using the
meta data from the floats (Park et al., 2005). A project is
underway to produce a better Argo drift data set using
the meta data (ANDRO—Argo New Displacements,
Rannou Ollitrault, Ollitrault and Rannou (2009)). For this
study, however, we take a different approach; although
the measurement uncertainty is different for each drift
datum, we use a representative value, εm, for all drift data
and examine the sensitivity of the overall uncertainty on
εm. We use (εm)1/2 = 5 × 10–3 ms–1 unless otherwise noted.

2.3  Sampling uncertainties
In this section, we summarise the method by Davis

(1991) to estimate the sampling uncertainties. The reader
is referred to the original paper (Section 4, in particular)
for detail.

Oceanic flows are so turbulent that the largest con-
tribution to the overall uncertainties is expected to come
from turbulent eddies. When [i] the velocity statistics and
float distribution are homogeneous over the averaging
area and stationary over the averaging time, [ii] the sam-
ple size is large, and [iii] Corrsin’s conjecture applies,
Davis (1991) shows that the sampling uncertainty in the
mean velocity estimate is given by
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where Ejk(x, t) is the time- and space-lagged covariance
of the j and k components of u′, A is the sampling area, L
is the sampling period, and N is the average number of
samples over L.

Corrsin’s conjecture (Shlien and Corrsin, 1974) states
that a particle’s position and its velocity are statistically
independent. When computing a statistics such as (5) from
Lagrangian data, one needs to deal with an ensemble av-
eraging of, say, δ(x – r(t|n))uk′ × δ(x – r(t|m)) ul′. Using
Corrsin’s conjecture, it is possible to proceed by separat-
ing the averaging as 〈δ(x – r(t|n))δ(x – r(t|m))〉〈uk′ul′〉.
The applicability of the conjecture to turbulence in gen-
eral is not proven (e.g., Ott and Mann, 2005), but the con-
jecture appears accurate in oceanic turbulence (Davis,
1983).

With a further assumption of long averaging time,
large averaging area, and statistically independence of
particle position, (5) is simplified to
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where λk is the integral length scale and κkk
∞ was defined

in (2).
The estimate given by Eq. (6) suggests that the sam-

pling covariance of the drift data is inversely proportional
to the sampling period L. Thus, the statistically optimal
averaging is
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The position of ũ  is assigned to the midpoint of x(tn +
τn|n) and x(tn|n). Similarly, the uncertainty due to
geostrophic depth correction, explained later in Subsec-
tion 3.2, is weighted by τn

2 when averaging.
The sampling uncertainty in the diffusivity estimate

has also been discussed by Davis (1991). In addition to
the three assumptions listed above (homogeneous and sta-
tionary statistics, large sample size, and applicability of
Corrsin’s conjecture), it is necessary to assume the joint-
normal distribution of v′ and r′, stationary Lagrangian
covariance, and a long observation period to reach an
evaluation

lim .
t

t t
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( )δκ

κ

2
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This approximation (9) holds for large t, but the Argo
floats need to ascend to the surface for communication,
every 10 days in most cases. This interruption in drift at
depth makes it difficult to obtain reliable records for pe-
riods longer than 10 days. The integral timescale T0 was
measured in several studies in the North Atlantic using
SOFAR floats, which do not need to surface and also have
better time resolutions. The results are summarised in ta-
ble 1 of Böning (1988). For the zonal direction, T0 varied
from 4.8 to 18 days (simple mean 12.5 days) and for the
meridional direction from 4.6 to 10.1 days (simple mean
7.6 days) at various depths from 700 to 2200 m. A similar
correlation timescale was reported by Lavender et al.
(2005). Therefore we expect that (9) is marginally appli-
cable with the Argo sampling period of 10 days. Assum-
ing T0 = 10 days and defining κ 

∞ = κ(t = T0), we dis-
carded data with sampling periods shorter than 9 days. If
the sampling periods were different from T0 = 10 days,
we used (9) to “normalise” the diffusivity error δκ at t =
T0.
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Fig. 1.  Diffusivity as estimated by the area-averaging method. Ellipse axes are the principal axes of the horizontal diffusivity
according to the colour coding. Strong diffusivity is found in the strong currents. Near the Equator the zonal diffusivity is
stronger than the meridional diffusivity.

Fig. 2.  Magnitude of the uncertainties in the geostrophic depth correction (ms–1) calculated by perturbing the temperature and
salinity during the geostrophic depth correction by one standard deviation as estimated in the original climatology data
(Gouretski and Koltermann, 2004). Colours indicate the magnitude of the correction uncertainty in log scale.
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In practice, we evaluated Eq. (1) to estimate the dif-
fusivity from each drift datum when area-averaging was
used (Fig. 1). Uncertainty in the diffusivity was estimated
assuming each datum as independent, making a correc-
tion for the sampling period with (9). The estimated dif-
fusivity gives an estimate of the mean velocity variance
through

′ = ( )
∞

u
Tjk

jk2

0

2 10
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.

Note that (5) or (6) means that (10) does not translate
into the expected covariance of the mean velocity U(x)
unless it is divided by the appropriate degrees of free-
dom of the data set. Referring to (5), the degrees of free-
dom in the data sample is defined as
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where ekk is the covariance function. We assumed a
Gaussian function
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Table 1 of Böning (1988) shows the length scales of 25
to 82 km (zonal) and 13 to 54 km (meridional). Noting
that these data were taken at mid-latitudes and that the
length scales vary with the Coriolis parameter, we selected
a length scale of D0 = 100 km. As stated above, T0 = 10.0
days. The sampling uncertainty was thus evaluated as
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3.  Method

3.1  Quality control
The Argo drift data, YoMaHa’07, is available online

(http://apdrc.soest.hawaii.edu/projects/yomaha). Monthly
and near-realtime updates are also available therein. The
discussion in this paper is based upon the monthly up-
dated version of March 2010. The original data set (as of
June 2007) consists of about 270,000 drift velocities, the
basic statics of which are provided in Lebedev et al.
(2007). The March 2010 version now has about 570,000
drift velocities. We took several steps to ensure the qual-

ity of data used in our analysis. First, the data from floats
with the cycle lengths shorter than 9 days were discarded,
because the short cycle length contaminates the diffusiv-
ity estimates (see Eq. (9)). Second, the drift data that in-
cluded possible groundings were removed. Drift data were
assumed to indicate grounding if both of the two follow-
ing conditions were met: [i] the parking depth recorded
in the YoMaHa’07 data are within 20% of the bottom
depth from the ETOPO5 data set*, and [ii] the drift speed
was less than 50% of the float average drift speed. Here
float average drift speed is the average of the drift speed
collected by a single float over repeated cycles. Third,
the drift velocities more than five standard deviations (cal-
culated for the velocities collected by a single float) away
from the float average drift speed were removed as
outliers. Approximately 4.9% and 0.05% of data were
removed as suspected groundings and outliers, respec-
tively.

3.2  Depth correction
As shown by Lebedev et al. (2007), the parking

depths of the floats varied from 400 dbar to 2000 dbar.
After the quality control checks described in Subsection
3.1, 66% of the floats in the data set had a parking depth
of 1000 dbar, which was used as our target depth. Data
from depths other than 1000 dbar were corrected by add-
ing a geostrophic shear calculated from the WOCE Glo-
bal Hydrographic Climatology (Gouretski and
Koltermann, 2004). The climatology data come with er-
ror estimates for temperature (∆T) and salinity (∆S). The
uncertainties involved in the depth correction, εc, were
evaluated by repeating the shear calculation with T ± ∆T
and S ± ∆S.

The magnitude of the uncertainty due to geostrophic
depth correction (Fig. 2) was generally negligible (<10–5

ms–1) and concentrated in the equatorial regions.

3.3  Seasonal variation in the equatorial regions
As demonstrated by Davis (1998), the flows in the

equatorial region (latitude < 5°) are dominated by low-
frequency zonal variability (Fig. 3), which must be fil-
tered out to accurately determine the mean field.

As in the study by Davis (2005), reanalysis data from
a numerical ocean general circulation model were used.
The model is an updated version of the ocean reanalysis
model described by Masuda et al. (2003, 2009). The model
is based on the GFDL MOM version 3 with a horizontal
grid resolution of 1° resolution and 46 vertical levels,

*Data Announcement 88-MGG-02, Digital relief of the
Surface of the Earth. NOAA, National Geophysical Data Center,
Boulder, Colorado, 1988 (http://www.ngdc.noaa.gov/mgg/
global/etopo5.HTML).
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forced by the National Centers for Environmental Pre-
diction/National Center for Atmospheric Research
(NCEP/NCAR) atmospheric reanalysis data. The model
output was constrained in the least-squares sense to the
observed data using the four-dimensional variational as-
similation method. The set of observed data was the EN3
quality controlled data (Ingleby and Huddleston, 2007)
plus recent data from JAMSTEC hydrography cruises
(e.g., Uchida and Fukasawa, 2005).

The spatial patterns were extracted by the empirical
orthogonal functions (EOF) of the model output at 1038
m depth. The EOFs were calculated separately for the
Pacific, Indian, and Atlantic oceans (but shown on one
map; Fig. 4).

The spatial functions were then fitted to the depth-
corrected Argo drift velocities averaged over 3 months
using the least-squares fit. Four spatial modes were used
in each basin. The four modes explained 31, 17, 6, 5%,
respectively, of the variance in the model Pacific Ocean.
The corresponding contributions in the Indian Ocean were
24, 19, 14, 10%, and 28, 21, 5, 5 in the Atlantic Ocean.
As the quantity of the data increased after 2003, the fit
worked reasonably well, except in the Indian Ocean where
the semi-annual variation was overestimated in the model
(Fig. 5). As part of this process, the data from years be-
fore 2000 were discarded; this helped to fulfil the assump-
tion of constant spatial density of float coverage discussed
in relation to Eq. (3).

Although the model output fits the observations rea-
sonably well (Fig. 5), it cannot completely remove the
equatorial zonal velocity covariance (Fig. 6). With this
remaining covariance and the vanishing Coriolis param-
eter, the mean velocity estimates in the equatorial regions
are accompanied by large errors in the resultant map, call-
ing for extra care when interpreting the data.

3.4  Area averaging and local function fit
The objective mapping requires prior estimates of

the covariances, which we estimated from the area-aver-
aged mean field. Following Davis (2005), the averaging
area takes into consideration the steering effect of the
bathymetry by defining the distance between points A and
B as

r r
H H
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A B

A B

2 2 2

2
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where rAB is the geographical distance between A and B,
and Hi is the depth at i = A, B. The averaging area is a
“circle” with r < R, where R is defined such that its area
is equal to π(300 km)2. In the actual calculation, the cir-
cle is approximated by a dodecagon. Following Davis
(2005), the constant µ is set at 300 km The topography
data are ETOPO5 smoothed with a 100 km Gaussian fil-
ter.

The area-averaged mean velocity at 1000 dbar (Fig.
7) shows the major ocean currents. There are no data for
the shallow marginal seas (the Sea of Okhotsk, the Medi-
terranean, and the Indonesian Seas) or ice covered polar
regions.

Simple area averaging fails to distinguish temporal
and spatial variabilities. The two can be separated by fit-
ting spatial functions locally. Following Davis (2005), we
used five nondivergent functions at (x, y) within the av-
eraging circle around the grid point (x0, y0)
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where x̂  and ŷ  are eastward and northward unit vectors,
respectively. All data within the “circle” with R = 300
km and µ = 300 km were used to estimate the amplitudes
a1, a2, ..., a5. We used the statistically optimal estimation
(Gauss-Markov theorem) by minimising
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where the trajectory velocities within the “circle” is

0 50 100 150 200 250 300

0

10

20

30

40

50

Days

U
 C

ov
. (

km
2 /d

ay
2 )

 

 

0 50 100 150 200 250 300
−5

0

5

10

15

Days

V
 C

ov
. (

km
2 /d

ay
2 )

 

 

Equatorial
Tropical
Subtropical

Equatorial
Tropical
Subtropical
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Fig. 5.  Time series of the spatial empirical orthogonal functions. The first two modes are shown for the Pacific, Indian, and
Atlantic oceans.
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df, af = (a1, a2, a3, a4, a5)T, Ff is the matrix representing
(15). The noise covariance Ef has the same diagonal com-
ponents

ε ε ε ε= + + ( )e c m , 17

where εe is the sampling error (Eq. (13)), due to eddies,
εc is the error due to geostrophic depth correction (Sub-
section 3.2) and εm is the measurement error (Subsection
2.2). We used the value of εm = (5 × 10–3 ms–1)2 unless
otherwise noted. The signal covariance Af is diagonal;
B11 = B22 = (10–2 ms–1)2, B33 = B44 = (10–4 ms–1)2, B55 =
(5 × 10–5 ms–1)2, with the distances x – x0 and y – y0 nor-
malised by the “radius” R = 300 km.

The resultant flow field (Fig. 8) appears very simi-
lar to the area-averaged case (Fig. 7), but the difference
(not shown) shows that the function fit mean velocity
tends to estimate the slightly weaker Antarctic
Circumpolar Current.

3.5  Objective mapping
3.5.1  Basis functions

Given covariances that decrease with distance and
time (e.g., Fig. 3), observed data are often mapped to a
grid using a spatially and/or temporally localised
covariance function (e.g., Gaussian). On the other hand,
Davis (2005) used a different approach, where the mapped
field is spanned by a set of basis functions. The advan-
tage of this approach is that the basis functions satisfy
the horizontal boundary condition of no flow through the
topography, such that the mapped field satisfies the same
boundary condition.

Two types of the spatial functions were prepared (Fig.
9); interior modes, and landmass modes. The interior
mode (n, m) is the solution of the Poisson equation

∇ ( ) = ( ) ⋅( ) ( )2 18φ r k r, , exp , ,n m i n m

with the boundary condition

φ = 0

on land. The landmass modes are the solution of (18) with
the right-hand side replaced with 0 and the boundary con-
dition φ = 1 on one particular landmass and φ = 0 on all
other landmasses. Unlike the analysis of Davis (2005),
our analysis is global so that no open ocean modes are
required.

The wavenumber vector in (18) is given by

k n m n N m Nx y, / , / ,( ) = ( ) ( )π π 19

where Nx = 360, Ny = 165, indicating the number of grids
in the zonal and meridional directions, respectively. The
mapping region is from 180°W to 180°E in longitude and
from 84.5°S to 79.5°N in latitude. In this work, we used
the wavenumbers from (n, m) = (1, 1) to (n, m) = (48,
48). The expected covariance of the interior modes is
given as Gaussian in the wavenumber space

exp , ,− ( ) ⋅( )





( )k Ln m 2 2
2 20

where we chose L = (4.0, 1.375).
Using the ETOPO5 topography data smoothed by a

100 km Gaussian filter, we took the 700 m isobath to de-
fine the horizontal boundaries. Under these conditions,
eight landmasses are found. The expected or a prior am-
plitude of the landmass modes can be prescribed by inde-
pendent estimates of the transport between the land-
masses. Here we used the geostrophic transport estimated
using WOCE Global Hydrographic Climatology
(Gouretski and Koltermann, 2004) and past observations
in major straits and channels between the landmasses.
These estimates are summarised in Table 1. The Ekman
transport is assumed to have oscillatory seasonal variabil-
ity with zero long-term average, which does not affect
the transports in Table 1.

The covariances of the interior and landmass modes
were all diagonal since we expected no relationships be-
tween different modes.
3.5.2  Objective mapping

The mathematical expression of the objective map-
ping is to find a vector a that minimises the cost function
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Fig. 8.  Function-fit mean velocity vectors at 1000 dbar.
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J HF E HF AT T= −( ) −( ) + ( )− −d a d a a a1 1 21,

where d is the velocities estimated by the floats, F con-
sists of the column vectors of the basis functions explained
in the previous section, and a is the amplitude of the ba-
sis functions. According to the Gauss-Markov theorem,
the minimum uncertainty is achieved by taking E as the
noise covariance matrix and A as the expected covariance
of a. The data d and the noise covariances E are taken

from the results of the function fit (Subsection 3.4).
The data d and the estimated parameters a do not

have to be the same quantity, which makes it possible to
determine a scalar field Fa instead of the velocity. The
matrix H converts the scalar field Fa into the velocity.
Following Davis (2005), we employed the geostrophic
pressure p as the scalar field. The advantage of this choice
is that the estimated velocity field satisfies the geostrophic
balance

Landmass A (×103 m2s−1) Obs. (Sv), location Reference

Asia−America−Europe 0 
Antarctica 71.4 134, Drake Passage Nowlin and Klinck (1986)
Madagascar 4.5 8.6, Mozambique Channel Harlander et al. (2008)
Kerguelen North 63.6 14.0, between Kerguelen and Antarctica McCartney and Donohue (2007)
Kerguelen South 63.6 14.0, between Kerguelen and Antarctica McCartney and Donohue (2007)

Australia−PNG 5.9 13.5, Indonesian Throughflow Gordon et al. (2008)
Philippines 1.5 2.4, Luzon Strait Qu et al. (2004)
New Zealand 9.6 10.1, between Australian and NZ Ridgway et al. (2008)

Fig. 9.  Examples of basis functions, showing the landmass modes for the Antarctica (left top) and New Zealand (left bottom), and
the interior modes with the wavenumbers (2,3) (right top) and (10, 10) (right bottom).

Table 1.  Landmass modes for basis functions including expected (a priori) amplitude (A) based on the observed (Obs.) transports
between landmasses.
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where f is the Coriolis parameter and ρ0 is a typical den-
sity of sea water. The matrix H is, then, a discretised ex-
pression of (22). To avoid singularity, the Coriolis pa-
rameter f at the Equator (where f = 0) was replaced by
that at latitude 0.1°. From 0.5°S to 0.5°N, no depth cor-
rection was performed and those data collected from
depths other than 1000 dbar in this latitude band were
discarded.

Although the covariances of the landmass modes are
estimated from the data listed in Table 1, we note here
that for the interior modes, only the magnitude of the
covariances relative to each other can be fixed by (20).
We therefore used a control parameter λ to optimise the
overall covariance (cov) A such that

diagA = [cov of landmass modes λ(cov of interior modes)].

We used the L-curve method proposed by Hansen (1992)
to find the best value for λ. In this method, the behaviour
of the cost function (21) is characterised by plotting the
solution semi-norm (the second term in (21)) against the

residual norm (the first term in (21)). The plot resembles
the letter “L” and the corner point gives the best λ, where
the balance between the two terms is reached. Figure 10
shows the L-curve. The corner point is somewhere be-
tween λ = 10–1 and λ = 10–2.

Once the parameter λ was fixed, the minimisation of
(21) was achieved following the SVD method described
in subsection 2.5 of Wunsch (2006).

4.  Results and Discussion

4.1  Objectively mapped mean velocity
We chose a value for λ of 10–2 (Fig. 10) but the re-

sults were not much different for λ = 10–1.5. The objec-
tively-mapped velocity field is much smoother than the
function-fit version (compare Figs. 11 and 8). Near the
horizontal boundaries, in particular, the flow tends to be
smoother in the objectively-mapped field because of the
basis functions that satisfy the horizontal boundary con-
ditions (Fig. 9).

Some blank regions in the function-fit map (e.g.,
south of 65°S) are now filled, but the lack of in situ data
is evident in the relatively high uncertainties in map of
geostrophic pressure (Fig. 12).

Although we have calculated the geostrophic pres-
sure across the Equator, the dynamics near the Equator
are fundamentally different from those at mid-latitudes
(e.g., chapter 11 of Gill, 1982) and the assumption of the
geostrophy (22) or non-divergence breaks down in this
region. We therefore regard the geostrophic pressure near
the Equator as erroneous. This region is removed by de-
leting the data with error speed larger than 0.08 ms–1. This
criterion also removes data from the marginal seas with
little floats (the Indonesian Seas, the Sea of Okhotsk, the
Gulf of Mexico, and the Ross Sea).

The behaviour of the uncertainty associated with the
velocity is easier to see when the uncertainty in the
geostrophic pressure (Fig. 12(b)) is converted into the
uncertainty in the velocity (Fig. 13). By using the
geostrophy (22), the uncertainties in the velocities (δu,
δv) are evaluated as

δ
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v
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q q
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where (i, j) are indices for zonal and meridional grids,
respectively, ∆x and ∆y are grid sizes (=1°), and q is the
squared uncertainty in the geostrophic pressure at the grid
estimated by the objective mapping. Since the interior
modes with the finest resolution has the zonal and me-
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ridional wavenumbers of 48 (see the discussion follow-
ing Eq. (19)), the uncertainties in neighbouring grids are
likely to be correlated. If two quantities a, b with
covariances 〈(δa)2〉, 〈(δb)2〉, respectively, are correlated,
the covariance in the sum c = a + b is evaluated as

a a b b

a b a b a b

+ + +( )

= +( ) + ( ) + ( ) + ( )

δ δ

δ δ δ δ

2

2 2 2 2 24,

where the covariances δa, δb are not correlated with a, b.
With

δ δ
δ δ

a b
a b

≤ ( ) + ( )2 2

2
,

the covariance in c = a + b can be evaluated as

δ δ δc a b( ) ≤ ( ) + ( ) ( )2 2 22 25.

The coefficient 2 on the right-hand side of (23) is thus
fixed. The uncertainty is relatively large in data-sparse
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Fig. 11.  Objectively-mapped mean velocity vectors at 1000 dbar.

regions towards the coast and in the Southern Ocean. The
bands of relatively high error (>0.03 ms–1) extend from
Africa to the Weddel Sea and from Australia to the Ross
Sea. These are the regions with high variability (Fig. 1)
but with a low data density, which suggests the sampling
uncertainty due to active eddies is the main source of the
uncertainty. The error is much lower in the Pacific and
Atlantic oceans away from the Equator, where the float
density is relatively high and the eddy activity is rela-
tively low.

Davis (2005) estimated the geostrophic pressure field
in the South Pacific and South Indian oceans using the
trajectories from about 530 ALACE floats deployed be-
tween 1991 and 1996. His results (figures 16 and 17 in
Davis, 2005) appear very similar to our results (Fig. 12).
A close look reveals the following differences: [i] the
eastward extent of the South Pacific subtropical gyre as
shown by the 10 cm contour shrank; [ii] the meridional
location of the Antarctic Circumpolar Current shifted
slightly southward; and [iii] the peak of the South Indian
subtropical gyre becomes weaker. Interestingly, the first
and second points are consistent with recent reports of
the changes in the hydrographic status in the Southern
Ocean, namely, the spin-up of the South Pacific subtropi-
cal gyre (Roemmich et al., 2007) and the poleward mi-
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(a) Geostrophic pressure
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Fig. 12.  Objectively-mapped (a) geostrophic pressure and (b) uncertainty in geostrophic pressure at 1000 dbar. The pressure has
been divided by ρ0 × g so that it has the dimension of length (cm). Figure 11 was produced by the spatial derivative of (a)
using (22).
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gration of the Antarctic Circumpolar Current (Gille,
2008). Owing to the paucity of data, particularly in the
1990s, however, the differences in the geostrophic pres-
sure estimated from the float trajectories are not statisti-
cally significant and further work is necessary to confirm
the third point listed above. As the trajectory data accu-
mulate, it might be possible in the future to detect long-
term changes in the circulation using the float trajecto-
ries only.

4.2  Zonal jets and southern supergyre
Before discussing array bias and the measurement

error, we note two interesting features of the estimated
mean velocity: zonally alternating jets and the Southern
Hemisphere supergyre.

Zonally alternating jets in mid- and deep oceans have
been a focus of recent researches (e.g., Nakano and
Hasumi, 2005; Maximenko et al., 2005) and it is possible
that these jets are observable in the Argo drift velocities.
We prepared a map showing the distribution of the zonal
velocity in the Pacific at 1000 dbar (Fig. 14, upper panel),
comparable to figure 4 of Nakano and Hasumi (2005).
On this map, the zonally alternating jets are not obvious.

We then prepared a meridional section of the zonally-av-
eraged zonal velocities (Fig. 14, lower panel). The distri-
bution of zonal velocities contains a fluctuating compo-
nent, which is emphasised by a high-pass filter. This zon-
ally alternating component has a meridional wavelength
of approximately 8° of latitude (Fig. 14, lower panel).
This is roughly twice the wavelength reported by Nakano
and Hasumi (2005) or Maximenko et al. (2005). We sus-
pect that our results show a low-pass-filtered zonal jet
structure because the mapping process filters out the high-
wavenumber components. Note that the radius of the area
averaging (Fig. 7) is R ≈ 300 km, which is coincidentally
a typical meridional length scale reported for this feature
by Nakano and Hasumi (2005), Maximenko et al. (2005).

Ridgway and Dunn (2007) used hydrographic data
to describe the Southern Hemisphere supergyre, a nested
system of subtropical gyres, that connects the subtropi-
cal South Pacific and South Indian gyres. Our results,
based on an independent data set, also show the exist-
ence of such a gyre (Fig. 15). One difference from the
hydrographic analysis (Ridgway and Dunn, 2007;
Roemmich, 2007) is that our results show the gyre ex-
tending into the Atlantic Ocean, although there is high
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(a) Array bias in geostrophic pressure
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Fig. 15.  Geostrophic pressure field in the Southern Hemisphere using a different contouring scheme than in Fig. 12. The 2 cm and
3 cm contours are evident not only in the Pacific and Indian oceans, but also in the Atlantic Ocean.

Fig. 16.  Array bias expressed in (a) pressure and (b) velocity. Array bias was estimated by subtracting the map with array bias
correction from the map without array bias correction. As seen in Eq. (3), the array bias is large where the gradient in the data
density is large.

uncertainty in the region south of Africa (Fig. 13) and we
cannot conclusively determine whether the Atlantic and
Indian gyres are connected or not. The variability in this
region is known to be high with occasional ring detach-
ments from the energetic Agulhas Current (Lutjeharms,
2006). It is also possible that an average description of
this region, such as ours, is dependent on the averaging
period.

4.3  Array bias
Figure 16 shows the distribution of the array bias.

The definition of the bias (the rightmost term in (3)) means
that it is large in areas with a large spatial gradient in the
data density and a large diffusivity. These conditions are
met near the boundaries and in the Southern Ocean. The
mean magnitude of the array bias, except for in the equa-
torial region (within latitude ±5°) is 0.7 × 10–3 ms–1, but
near the coast, the magnitude reaches 15 × 10–3 ms–1.

4.4  Measurement uncertainties
The objective mapping yields estimated uncertainty

((2.342) of Wunsch, 2006) of the mapping along with the
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mapped field. We call this uncertainty as the overall un-
certainty and we examine the sensitivity of the overall
uncertainty to the measurement error εm (Fig. 17) by re-
peating the objective mapping with different εm’s. The
overall uncertainty is not sensitive to the measurement
error when the measurement error is less than 10–2 ms–1.
This means that efforts to improve the measurement er-
ror will not yield improved results unless the measure-
ment error is larger than 10–2 ms–1. On the other hand, if
the measurement error is likely to be larger than 10–2

ms–1, a reduced measurement error will contribute to re-
ducing the overall error. Ideally, the measurement error
should be estimated for each drift datum along with the
surfacing and submerging time stamps, the Argos system
error, and information on shear and surface currents, but
not all Argo drift data come with such useful informa-
tion, and efforts for reliable estimation of the measure-
ment error and its correction should continue.

We note that the overall uncertainty shown in Fig.
17 applies specifically to the current study parameters: a
global analysis with a horizontal resolution of 1° and data
from more than 9 years. A different mapping technique
or the size of sample (e.g., regional studies, studies fo-
cusing on particular times or seasons) would probably
yield a different dependency of the overall uncertainty
on the measurement errors.

5.  Summary
We estimated average flows at 1000 dbar from the

drift data of Argo floats from early 2000 to 2010 on a
quasi-global, 1° grid. The estimated flows are statistically
optimal, are in geostrophic balance, and satisfy the con-
dition of no flow through the horizontal boundaries. The
uncertainties in the resultant flows originate from the sam-
pling variability, the measurement uncertainties, and the
array bias. The uncertainties are large near the Equator
and along the coast of Antarctica coasts, and are not sen-
sitive to the measurement uncertainties if the measure-
ment uncertainties are less than about 10–2 ms–1. The ar-
ray bias is negligible except in coastal regions.

The sampling and measurement uncertainties will
decrease as more drift data are accumulated. An increase
in data also should yield a more accurate estimate of the
eddy diffusivity leading to a better estimate of the array
bias in coastal regions.
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