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Less than 2 ◦C warming by 2100 unlikely
Adrian E. Raftery1*, Alec Zimmer2, Dargan M.W. Frierson3, Richard Startz4 and Peiran Liu1

The recently published Intergovernmental Panel on Climate
Change (IPCC) projections to 2100 give likely ranges of
global temperature increase in four scenarios for population,
economic growth and carbon use1. However, these projections
are not based on a fully statistical approach. Here we use
a country-specific version of Kaya’s identity to develop a
statistically based probabilistic forecast of CO2 emissions
and temperature change to 2100. Using data for 1960–2010,
including the UN’s probabilistic population projections for all
countries2–4, we develop a joint Bayesian hierarchical model
for Gross Domestic Product (GDP) per capita and carbon
intensity. We find that the 90% interval for cumulative CO2
emissions includes the IPCC’s twomiddle scenarios but not the
extreme ones. The likely range of global temperature increase
is 2.0–4.9 ◦C, with median 3.2 ◦C and a 5% (1%) chance that
it will be less than 2 ◦C (1.5 ◦C). Population growth is not a
major contributing factor.Ourmodel is not a ‘business asusual’
scenario, but rather is based on data which already show the
e�ect of emission mitigation policies. Achieving the goal of
less than 1.5 ◦Cwarmingwill require carbon intensity to decline
much faster than in the recent past.

The IPCC has issued projections of climate change based on four
different pathways for emissions and land use up to 2100, each one
in turn based on a different socioeconomic scenario for the world’s
future and developed by a different research group1,5. They are called
representative concentration pathways (RCPs) and were selected so
as to represent the scientific literature as of 2007 and to span a range
of radiative forcings by 2100. The RCP2.6 scenario was designed
to represent very low greenhouse gas concentration levels6, RCP4.5
andRCP6 are stabilization scenarios7,8, andRCP8.5 represents rising
radiative forcing9. The RCPs were not to be interpreted as forecasts5.

The two key socioeconomic driving forces of the RCPs are
population andGDP, and the RCPs drew on population information
up to 201210. TheUNhas recently issued newpopulation projections
to 2100, reflecting data up to 20152. These are probabilistic
projections based on a Bayesian model3,4,11. The UN’s predictive
distribution for world population in 2100 has a median of
11.2 billion and a 90% interval from 9.7 to 12.9 billion. Three of the
four RCPs are based on population in 2100 below the lower fifth
percentile of the UN’s predictive distribution (9.7 billion); the only
one higher is the high-emissions RCP8.5. This raises the question of
the impact of the higher projected future population on climate.

The availability of probabilistic population projections now
(unlike when the RCPs were formulated) makes it more feasible
to develop a statistical forecasting model for the key drivers, as
advocated by Moss and Schneider12. We use a simple form of the
Kaya identity, which expresses future emission levels in a country
as a product of three components: population, GDP per capita,
and carbon intensity (CO2 emissions per unit of GDP)13,14. This

is a specific version of the IPAT equation, Impact = Population
× Affluence × Technology. We use data from 1960 to 2010
on GDP per capita and carbon intensity for most countries. We
build a joint Bayesian hierarchical statistical model for GDP per
capita and carbon intensity in most countries, and combine it
with the UN probabilistic population projections to produce a
predictive distribution of quantities of interest to 2100. We develop
a probabilistic forecast of global temperature increase by combining
them with the relationship between cumulative CO2 emissions and
temperature used by the IPCC15.

For GDP per capita we use a Bayesian hierarchical model for
all countries based on the idea of a world technology frontier
(represented by the US for the period of our data), towards which
countries may converge16; see Supplementary Fig. 1. The frontier
is modelled by a random walk model with constant drift17,18. This
allows countries with high current growth rates to continue growing
fast in the short tomedium term, while avoiding unrealistically high
long-term forecasts.

To model carbon intensity, we note that most countries have
reached a peak intensity; subsequently their carbon intensity has
been trending downwards, as illustrated in Fig. 1. Note that we posit
a peak and subsequent decline in CO2 emissions per unit of GDP;
this is different from the Environmental Kuznets Curve hypothesis
that CO2 emissions per person rise and then decline, which has
not been established despite much research19. We model carbon
intensity using a Bayesian hierarchical model for most countries
estimated using the post-peak data. For each country, intensity is
modelled as a linear trend plus an autoregressive random process.

Our model incorporated a within-country correlation between
model errors in GDP per capita and carbon intensity, estimated to
be−0.16.We found no significant correlation betweenmodel errors
in population and either of the other two components.

An advantage of a fully statistical model is that it can be assessed
by prediction validation experiments; we carried out several. In
the first one, we fitted the model using only data from 1950 to
1980, generated predictive distributions for the following 30 years,
and compared them with what actually happened. We repeated
forecasts through 2010 for data up to 1990 and 2000, respectively.
Illustrative results for world CO2 emissions are shown in Fig. 2.
The results showed the model to be reasonably well calibrated.
The largest deviation from our median forecast in these validation
experiments is in prediction of the rapid uptick in CO2 emissions
from 2000 to 2010. This decade of rapid emissions, driven largely by
China’s exceptionally rapid growth, nevertheless lies within our 90%
intervals for all three predictive validation experiments.

The results of these calibration exercises by country are shown in
Supplementary Table 1, while the results for the five IPCC regions
are shown in Supplementary Fig. 2. These indicate that the model is
reasonably well calibrated at the regional (continental) and country
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Figure 1 | Carbon intensity, expressed in tonnes of CO2 per US$10,000 in 2010 Purchasing Power Parity for USA, China, India, and Nigeria. This
illustrates the tendency of carbon intensity to decline after a peak has been reached.
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Figure 2 | Out-of-sample predictive validation of model for world CO2 emissions. a, Model estimated from data from 1950 to 1980 and used to generate
predictive distributions for 1980–2010, excluding countries in the former USSR due to lack of data. The solid red line is the predictive median, the heavily
shaded region is the likely range (90% interval), the lightly shaded region is the 95% interval, and the black line shows the observations. b, Model
estimated from 1950 to 1990 data, predictions for 1990–2010. c, Model estimated from 1950 to 2000 data, predictions for 2000–2010.

levels as well. Although these results are encouraging, it should be
noted that they cover a prediction horizon of 30 years and 50 years
of data overall, whereas we are projecting up to 90 years ahead.
Thus our forecasts are best thought of as projections assuming that
the general range of trends of the past 50 years continues into
the future.

Figure 3 shows our predictive distributions of future world
CO2 emissions, by year and cumulatively, as well as of the Kaya

components. The median projection lies between those of the
two middle RCPs, RCP4.5 and RCP6. However, the plausible range
of cumulative future emissions iswide, with a likely range from2,300
to 5,700 Gt of CO2 by 2100. The results suggest that cumulative
emissions are likely to be higher than projected by the low-emissions
RCP2.6 scenario, based on present evidence. Although they are
likely to be lower than the 6,840 Gt projected by the high-emissions
scenario RCP8.5, they could well reach 83% of that level based on
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Figure 3 | Probabilistic forecast to 2100, with IPCC RCP scenarios. a, CO2 emissions by year. b, Cumulative CO2 emissions by year. c, Logarithm of the
components of the Kaya identity by year, normalized to zero in 1960: population, GDP per capita, carbon intensity. d, Histogram of the predictive
distribution of the global mean temperature increase relative to 1861–1880 (◦C). In a and b, the solid red line is the predictive median, the heavily shaded
region is the likely range (90% interval), the lightly shaded region is the 95% interval, and the IPCC RCP scenarios are the dashed lines.

trends to date. Predictive distributions for the five IPCC regions and
15 selected countries are shown in Supplementary Figs 3–6.

Figure 3c shows the Kaya components. Broadly, GDP per capita
is expected to rise at around 1.8% per year, while carbon intensity is
expected to decline by around 1.9% per year. These countervailing
trends are likely to cancel one another out to a large extent. Our
predictive distribution of future world GDP per capita largely spans
the range of scenarios used by the IPCC20–22, although there are large
differences on a country-by-country basis. In particular, we project
slower GDP growth in developing countries, due to weak or zero
estimates of the rate of convergence to the world frontier.

The median UN population projection is for an increase of
4 billion to 2100, from the current 7.2 billion to 11.2 billion. A large
portion of that increase is projected to be in Sub-Saharan Africa
(SSA), whose population is projected to increase from its current
1 billion to 3.9 billion. Although GDP is projected to rise by around
a factor of 21, CO2 emissions fromSSAare projected to be only about
6% of the world total at the end of the century. This reflects the very

low current economic production in the region, and suggests that
population increase will not be a major contributing factor to future
increases in emissions this century.

We assessed the contribution of the three components to
uncertainty about CO2 emissions in 2100, asmeasured by predictive
variance on the logarithmic scale. GDPper capita accounted for 50%
of uncertainty, carbon intensity for 48%, and population for only 2%.
Measures to reduce future emissions would need to target at least
one of these components. Policies to reduce GDP per capita seem
unlikely, and population increase will not be a major factor. This
suggests that future policies should target carbon intensity.

Figure 3d shows the predictive distribution of global mean tem-
perature increase to 2100, in the form of a histogram of random
draws from themodel. This is obtained by combining our predictive
distribution of cumulative CO2 emissions to 2100 with the relation-
ship between cumulative CO2 emissions and warming described
by the IPCC15. The likely range is 2.0–4.9 ◦C, with a median of
3.2 ◦C. There is a 5% chance of less than 2 ◦C warming, and a 1%
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Figure 4 | Probabilistic CO2 emissions forecasts for leading countries and regions, with Paris climate agreement targets. In each panel, the large black
dot shows the preliminary estimate of CO2 emissions for 2015, while the large blue dot shows the Paris climate agreement target for 2030 (2025 for the
US). The targets for China and India are in terms of carbon intensity rather than total CO2 emissions, and no comparable 2015 numbers for these two
countries are available.

chance of less than 1.5 ◦C. This takes account of uncertainty in
future population growth, economic growth, carbon intensity and
climate sensitivity.

Figure 4 shows the predictive distributions to 2030 for five major
countries and the European Union, compared with the 2015 Paris
climate agreement intended nationally determined contributions
(INDC)23. The INDCs were proposed with equity principles such as
‘common but differentiated responsibilities’ in mind, so these data
should not be used to criticize countries’ individual targets. These
targets are well within the predictive intervals for Russia and India,
towards the lower end but within the intervals for Japan and China,
and well below the lower bounds for the USA and the EU. If China
and India were to reach their intensity targets, it would probably
result in decreases in carbon emissions in China, and relatively weak
increases in India. This is in part due to a likely decrease in GDP
growth rates in these countries.

Figure 4 also shows the preliminary report emissions for 2015
for the four major countries whose targets are expressed in terms
of emissions rather than of carbon intensity. For Japan and Russia,
these are very close to the median projections. For the US they
are within the interval but at the low end, while for the EU they
are below the bottom of the 95% interval, suggesting that the Paris
Agreement targets could be reached. If the EU and theUS alonewere
to meet their Paris Agreement targets, it would reduce our global
emissions median forecast by nearly 3 Gt CO2/year in 2030, down
to a level similar to today’s emissions. Rapid reductions in emissions
would still be necessary thereafter to limit warming to 2 degrees24.
Figure 3a suggests that the Paris Agreement’s target of net zero
emissions in the second half of the twenty-first century is unlikely to
be reached.

Other probabilistic forecasting methods for emissions and
temperature increase have been proposed, using combinations
of statistical modelling, expert elicitation and scenarios25–28; in
contrast, our approach is fully statistical. Our forecasting model
does not explicitly incorporate future legislation that could change
future emissions. It is based on past emissions, which implicitly
account for accumulating legislation and regulation over the past
30 years since climate change became a global issue, and indeed
carbon intensity has been improving steadily over that period. The
model has performed well under cross-validation. We have also not
accounted for the possibility that decreasing prices for alternative
energy could cause a sudden massive shift to alternative energy.
This would be speculative, especially given that the experience of the
past 60 years is that carbon intensity has improved steadily in most
countries past a certain point, rather than by abrupt large changes.
The reverse is also possible due to decreases in fossil fuel prices,
which have dropped in recent years.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Data. For population, we used the estimates of population for all countries from
1950 to 2015 issued by the UN2. We produced probabilistic projections for all
countries with the model used by the UN for its probabilistic projections2–4. The
prediction intervals for future population from these projections are available at
http://esa.un.org/unpd/wpp/Download/Probabilistic/Population.

GDP per capita data came from the Maddison Project, using data from 1960 to
201029. We chose the Maddison Project data set for its completeness. The Maddison
Project uses purchasing power parity (PPP) rather than market exchange rates to
put GDP data on the same scale across countries and to adjust for inflation over
time. GDP data are missing for countries in the former Soviet Union prior to 1990,
and are missing for some countries in 2009 and 2010. The Maddison Project
provides GDP data in 1990 US dollars, which we converted to 2010 US dollars by
multiplying by 1.52 based on the OECD price deflator30.

CO2 emissions data came from the Global Carbon Budget31. We used data from
1960 to 2010. We used fossil fuel and cement production emissions for each
country, excluding emissions from land-use change.

Our unit for carbon intensity is tonnes of CO2 per US$10,000 in 2010
Purchasing Power Parity. For most countries carbon intensity has peaked and has
seen a declining trend since the peak, and so we restricted the carbon intensity data
we used to be post-peak for each country. We determined the peak for each country
by finding the maximum of the intensity curve after smoothing the series using the
loess smoother with span 0.25. We thus fitted our model to the decline phase of
carbon intensity for each country, removing the earlier phase of non-declining
carbon intensity. The United States and most Western European countries had
declining carbon intensity throughout the data period 1960–2010. If carbon
intensity had not peaked in a country by 2003, we determined that there was not
enough evidence to determine that it had peaked yet.

There were 13 countries whose carbon intensity had not peaked by 2003,
namely Angola, Benin, Bangladesh, Bolivia, Comoros, Honduras, Haiti, Morocco,
Mauritius, Malaysia, El Salvador, Sao Tome and Principe, and Seychelles. There was
also one country with fewer than 20 years of intensity data, namely Namibia. These
14 countries were excluded when estimating the intensity model, but not when
projecting future emissions. We assumed that their intensity would start to decline
immediately in 2010, a conservative assumption.

We removed North Korea, Qatar, Lesotho, Palestine, and Somalia from our data
set due to the poor quality of the data for these countries. We restricted data for the
United Arab Emirates, removing emissions data prior to 1969, and for Senegal,
removing 1968 emissions data, also because of data quality concerns. After
merging together these different data sources and removing these countries, we had
152 countries in our data set. The 49 countries with more than 100,000 inhabitants
in the UNWorld Populations Projections (WPP) data set but not in ours had
93.7 million people in 2015. Countries we are not including with a population
above 5 million people are North Korea (25 million people), South Sudan
(12.3 million), Somalia (10.8 million), Papua New Guinea (7.6 million), and Eritrea
(5.2 million). The countries included in our data set accounted for 98.7% of the
world’s population in 2015.

Model specification.We used Bayesian hierarchical models for each of the three
components of the Kaya identity, estimated by Markov Chain Monte Carlo
(MCMC)32. These are multilevel models in which each country has its own set of
model parameters, and these parameters in turn are assumed to be drawn from a
worldwide distribution. This yields estimates for individual countries that rely not
only on the data for that country, but are also informed by the experience of other
countries. This is particularly useful when data for a country are sparse or noisy.

We used the UN’s official 2015 population projections for all countries, which
are probabilistic and also based on Bayesian hierarchical models for fertility
and mortality2–4.

The model for GDP per capita has two components. There is a world frontier of
GDP per capita, for which we use the United States as a proxy, and the GDP
per capita of other countries converges to this world frontier at a country-specific
rate. GDP per capita is modelled on the logarithmic scale, with the world frontier
GDP per capita following a random walk with drift, also on the logarithmic scale.
We represent the world frontier by the United States, allowing a different growth
rate prior for 1960 to 1973, since during this time the United States experienced a
period of high growth which has not persisted33. Note that our model does not
allow a country’s GDP to diverge systematically away from the frontier, although it
may move further away from the frontier in any given time period.

We projected carbon intensity on the logarithmic scale for each country. We
model the logarithm of carbon intensity as following a linear trend plus a
first-order autoregressive process for each country.

We denote by Ft the logarithm of GDP per capita in the United States in year t,
and by Gc,t the logarithm of GDP per capita in country c in year t. We denote by τc,t
the logarithm of carbon intensity in country c in year t. We use vague prior
distributions for the world-level parameters. Our joint Bayesian hierarchical model
for GDP and carbon intensity is then defined as follows:

GDP Component:
Ft = Ft−1+γ +γpre19731[t≤1973]+ε(f )t

Ft−Gc,t = φc(Ft−1−Gc,t−1)+ε
(g )
c,t

ε(g )c,t ∼ N (0,σ (g )2c )

γ ∼ Uniform(0, 1)
γpre1973 ∼ Uniform(−0.1, 0.1)

φc ∼ TN[0,1](µφ ,σ 2
φ
) (truncated normal, to be in [0, 1])

µφ ∼ Uniform(0, 1)
σφ ∼ Uniform(0, 1)
ε(f )t ∼ N (0,σ (f )2)
σ (f ) ∼ LN (−3, 20) (lognormal)
σ (g )c ∼ LN (µ(g ),σ (g )2)
µ(g ) ∼ N (−6, 40)
σ (g ) ∼ Uniform(0.05, 5)

Carbon Intensity Component:
τc,t = η(t− t̄)+βτc,t−1−δc+εc,t,
η ∼ N (0, 1/100),
β ∼ Uniform(0, 1),

εc,t|ε
(g )
c,t ∼ N

(
ρ
σc

σ (g )c

ε
(g )
c,t , (1−ρ)σ

2
c

)
,

δc ∼ N (µδ ,σ 2
δ
),

µδ ∼ N (0, 1),
σδ ∼ LN (−5, 1.152),
σc ∼ LN (σµ,σ 2

SD),
σµ ∼ N (−2, 100),
σSD ∼ Uniform(0.05, 5),
ρ ∼ Uniform(−1, 1).

Model estimation.We fitted our model using Markov Chain Monte Carlo
(MCMC) sampling, as implemented by the JAGS package34,35 in the
R programming language36. Five chains were used, and each chain was
run for 100,000 iterations after a burn-in period of 5,000 iterations; standard
diagnostics indicated this to be sufficient to approximate the posterior
distribution well.

To make projections we simulated many future trajectories of population, GDP
per capita and carbon intensity jointly from their predictive distribution. To
simulate one future trajectory, we proceeded as follows. We first sampled model
parameters from the posterior distribution by choosing the parameters from one
iteration of the MCMC algorithm chosen at random. Then, for each set of model
parameters sampled, we sampled model random errors from their conditional
distribution given the parameters sampled. Finally, we projected the future
trajectory forward using the model, the sampled model parameters, and the
sampled model random errors. These three steps were repeated many times,
yielding many future possible trajectories. Prediction intervals were determined
using quantiles of the resulting distribution.

We constrained intensity to a maximum of 50 tonnes of CO2 per US$10,000
when projecting forward, a level higher than any seen historically, to constrain any
unreasonably high projections for individual countries. This affected only some
projections for Cameroon and the Republic of Congo. When sampled intensity for
a country in a certain year would have exceeded this limit of 50, the intensity value
was resampled for that country and year.

We were prepared to impose a hard upper limit on cumulative emissions based
on the amount of fossil fuel in the ground, taken to be 11,000 Gt based on McGlade
and Elkin37, which is a conservative estimate relative to other estimates by the BGR,
the IEA and the GEA (see Supplementary Table 5 in McGlade and Elkin37).
However, none of our trajectories encountered this limit.

Model validation. Out-of-sample validation was used to check model bias and the
calibration of our confidence intervals. The model was fitted only on data up to
1980, 1990, or 2000, and projections were made until 2010. This included
determining when countries had peaked in intensity, with the restriction that the
peak had to come at least 5 years before the last year of training data, mirroring
model fitting in our primary analysis.

For each 5-year period, we checked the proportion of 90% and 95% intervals by
country that included the true proportion of emissions for that country, along with
the proportion of countries that had emissions above or below the median
projected emissions.

We also performed out-of-sample validation by aggregating over the five IPCC
regions in the RC5 classification38: OECD 1990 countries; Reforming Economies
(REF), consisting of Eastern Europe and the former Soviet Union; Asia, consisting
of non-OECD Asian countries, Middle East and Africa (MAF); and Latin America
(LEM), consisting of countries of Latin America and the Caribbean. This also
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served as a check on cross-country correlation, since positive residuals between
countries would lead to confidence intervals that are too narrow. In addition to
checking interval coverage for CO2 emissions, we also checked interval coverage by
IPAT component.

Predictive distribution of temperature increase. Recent research has shown that
temperature increase by 2100 is largely a linear function of cumulative carbon
dioxide emissions39,40. We use the relation from Figure SPM.5 in the IPCC 2014
Synthesis Report15 which relates cumulative emissions since 1860 to a probability
density function of temperature change from 1861–80 to 2100, assumed to be
conditionally Gaussian. This estimate takes into account uncertainty due to the
carbon cycle, ocean heat uptake, and climate sensitivity.

Global temperature is also affected by emissions of other greenhouse gases such
as methane, and the cleanup of aerosols, which affect the Earth’s albedo. For the
century-long global warming response, these factors become smaller in relative
importance to CO2. A full calculation of their relative effects is beyond the scope of
this study.

Posterior distributions. The posterior medians and 95% intervals of the
world-level parameters for the model of GDP and carbon intensity are shown in
Supplementary Table 2. They are much tighter than the prior distributions, because
the data provide substantial information about the world distribution as well as
about the individual countries. In the GDP component of the model, perhaps
surprisingly, the majority (110 out of 152) of the country-level φc values had a
posterior median of 1, which corresponds to keeping pace with the frontier but not
converging to it. However, these 110 countries accounted for only 39% of world
population, so 61% of people were living in countries at the frontier or converging
to it.

The posterior distribution of the parameter ρ describing the country-level
correlation of residuals between the intensity and GDP models had a
posterior median of 0.157, with a 95% interval of (0.127, 0.186). Note that by
the model form, since the GDP model is expressed with a−Gc,t, this means

that higher GDP per capita than expected corresponds to lower intensity
than expected.

Data availability. The data and code used to produce the results in this article are
available at https://github.com/PPgp/CO2projections.
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