

Autolocalization techniques for ocean modelling using OpenDA

Nils van Velzen, Umer Altaf, Martin Verlaan, Arnold Heemink

Workshop on Meteorological Sensitivity Analysis and Data Assimilation 1-5 June 2015 Roanoke, West Virginia

Outline

- OpenDA
- Ensemble methods and localization
- Automatic localization techniques
- Experiments with NEMO model

OpenDA: framework for Data Assimiation

Content:

- Set of interfaces that define interactions between components
- Library of data-assimilation algorithms
- DA philosophy
- Building blocks only need to be implemented once

OpenDA: framework for Data Assimiation

- Black box coupling
- Model needs proper restart functionality
- + Easy to implemented
- + No change to model code
- Restart/file overhead
- localization might be difficult to implement

Ensemble Kalman methods:

$$\hat{\mathbf{P}}_{k}^{f} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\mathbf{x}_{k,i}^{f} - \hat{\mathbf{x}}_{k}^{f} \right) \left(\mathbf{x}_{k,i}^{f} - \hat{\mathbf{x}}_{k}^{f} \right)^{T}$$

$$\mathbf{K}_k = \hat{\mathbf{P}}_k^{xh} \left(\hat{\mathbf{P}}_k^{hh} + \mathbf{R}_k \right)^{-1}$$

Analyzed ensemble is given by:

$$\mathbf{x}_{k,i}^{a} = \mathbf{x}_{k,i}^{f} + \mathbf{K}_{k} \left(\mathbf{y}_{k,i}^{s} - \mathcal{H}_{k}(\mathbf{x}_{k,i}^{f}) \right), i = 1, 2, ..., n,$$

Covariance: low rank approximation compared to model state:

$$\mathcal{O}(10-100)$$

- Structural underestimation of errors
- Spurious correlations

 Ensemble is set of "basis" vectors for representing errors and update

Localization of gain matrix

$$\mathbf{K}^{Loc} = \mathbf{K} \circ \boldsymbol{\beta}_{xy}$$

- Increases "dimension" of the update
- How to determine β_{xy} ?
- Is distance a good measure?
- What is the location of state variables

Source:deltares

Auto Localization

- Anderson 2004:
 - Define N_q groups of N_e ensembles
 - Each group has its own gain matrix $\mathbf{K}_{j}, j=1,..,N_{a}$

$$\mathbf{K}_{j}, j = 1, .., N_{q}$$

- Assume elements from gain matrices are drawn from distribution containing the "true" gain matrix.
- Minimize:

$$\sqrt{\sum_{j=1}^{N_g} \sum_{k=1, k \neq j}^{N_g} (\alpha_i k_{i,k} - k_{i,j})}.$$

- Too much computational work for real time application
- Good for investigating good selections of weights

Auto Localization

- Zhang and Oliver 2011:
 - Create ensemble (N_B) of gain matrices based on the initial ensemble using bootstrapping
 - Estimation of variance of each element of the gain matrix

$$\hat{\sigma}_{k_{i,j}}^2 = \frac{\sum_{m=1}^{N_B} \left(\hat{k}_{i,j,m}^* - \bar{k}_{i,j} \right)^2}{N_B}$$

Ratio between mean and variance

$$\hat{C}_{v_i,j}^2 = \frac{\hat{\sigma}_{\theta_i,j}^2}{\bar{k}_{i,j}^2}$$

Localization weights

$$\beta_{i,j} = \frac{1}{1 + \left(1 + 1/\sigma_{\alpha}^2 \hat{C}_{v_i,j}^2\right)}$$

Balance parameter (Zhang and Oliver 2010)

Experiment Setup

Medium Case Benchmark

- •Free run 40 years.
- •State vector includes: (ub,vb,tb,sshb,un,vn,tn,sshn)

Ensemble Kalman filter

- 30/100 Ensemble members
- SSH observations. ENVISAT, Jason-1
- Analysis: 2 days

Experiment Setup

Results

Results

Medium Case Benchmark

- Assimilating SSH every 2 days
- Assimilation period: 1 year

Medium Case Benchmark Results

- Localization improves results
- Limitation: No. of observation

Summary

- NEMO-OpenDA framework is established.
- Localization is not trivial to implement
- Auto localization seems promising
- Next steps:
 - More experimenting
 - Combine auto localization with normal localization

Acknowledgements:

This work is supported by SANGOMA a European FP7-SPACE-2011 project, Grant 283580.

This work was carried out with the support of the Danish Council for Strategic Research as part of the project "HydroCast e Hydrological Forecasting and Data Assimilation", Contract No. 11- 116880 (http:// hydrocast.dhigroup.com/).

