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[1] Data assimilation experiments with the coupled physical, bio-optical model of
Monterey Bay are presented. The objective of this study is to investigate whether the
assimilation of satellite-derived bio-optical properties can improve the model predictions
(phytoplankton population, chlorophyll) in a coastal ocean on time scales of 1–5 days. The
Monterey Bay model consists of a physical model based on the Navy Coastal Ocean Model
and a biochemical model which includes three nutrients, two phytoplankton groups
(diatoms and small phytoplankton), two groups of zooplankton grazers, and two detrital
pools. The Navy Coupled Ocean Data Assimilation system is used for the assimilation
of physical observations. For the assimilation of bio-optical observations, we used
reduced-order Kalman filter with a stationary forecast error covariance. The forecast error
covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical
orthogonal functions estimated from a monthlong model run. With the assimilation of
satellite-derived bio-optical properties (chlorophyll a or absorption due to phytoplankton),
the model was able to reproduce intensity and tendencies in subsurface chlorophyll
distributions observed at water sample locations in the Monterey Bay, CA. Data
assimilation also improved agreement between the observed and model-predicted ratios
between diatoms and small phytoplankton populations. Model runs with or without
assimilation of satellite-derived bio-optical observations show underestimated values of
nitrate as compared to the water sample observations. We found that an instantaneous
update of nitrate based on statistical relations between temperature and nitrate corrected the
model underestimation of the nitrate fields during the multivariate update.
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1. Introduction

[2] During the last decade, considerable efforts have been
made in development and testing approaches for the assimi-
lation of bio-optical properties (especially satellite observa-
tions of the ocean color) into biochemical, physical models.
Some studies have focused on the optimization of model
parameters and parameterizations with regards to observations
[see, for example, Spitz et al., 1998; McGillicuddy et al.,
1998; Fennel et al., 2001; Hofmann and Friedrichs, 2002;
Friedrichs et al., 2006; Smith et al., 2009; Doron et al.,
2011], while others have focused on the sequential estimation

(updating) of model bio-optical and physical state variables
based on available observations [for example, Anderson et al.,
2000, 2001; Natvik and Evensen, 2003; Besiktepe et al., 2003;
Nerger and Gregg, 2007; Cossarini et al., 2009; Smith and
McGillicuddy, 2011; Ciavatta et al., 2011; Ford et al., 2012;
Hu et al., 2012; Rousseaux and Gregg, 2012]. The objectives
of many studies were the improvement of seasonal or yearly
hindcasts of bio-optical properties. For example, in Cossarini
et al. [2009], the objective was to investigate the seasonal
ecosystem dynamics of the Lagoon of Venice. The objective
of Ciavatta et al. [2011] was to investigate if a yearlong
assimilation of weekly satellite chlorophyll data improves
the hindcast of key biogeochemical variables in shelf seas.
Ford et al. [2012] conducted assimilation of satellite-derived
chlorophyll into the global coupled physical, biochemical
model. The objective of Rousseaux and Gregg [2012] was
the study of climate variability and phytoplankton com-
position in the Pacific Ocean. The impact of yearlong
assimilation of SeaWiFS- and MODIS-derived chlorophyll
on ecosystem model predictions was investigated in Hu et al.
[2012]. See Gregg [2008], McClain [2009], and Hu et al.
[2012] for a more detail review of data assimilative studies.
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[3] In contrast to the existing studies, the objective of
this paper is to investigate whether the assimilation of
satellite-derived bio-optical properties (as either chlorophyll
a (Chl) or absorption coefficient) can improve the ecosystem
model predictions of chlorophyll and phytoplankton pop-
ulation in a coastal ocean on time scales of 1–5 days. The
specific time scale of 1–5 days is chosen because it is a time
scale of availability of the atmospheric model forecast
needed to force the oceanic model forecast. The atmospheric
model forecast includes predictions of short-wave radiation,
which is critical not only for forecasting the heat content and
other physical properties of the ocean but also for estimating
the photosynthetically active radiation (PAR) which drives
photosynthesis of the ecosystem model, and relevant to the
forecast of the underwater light. Predictions of optical prop-
erties and underwater light are critical for numerous Navy
operations, which rely on 1–5 days of forecasts.
[4] We designed our computational experiments to coin-

cide with a large bio-optical field campaign that was
conducted in Monterey Bay, California during a sustained
wind-driven upwelling event in June 2008. The field pro-
gram captured the dynamic response of the Bay ecosystem
to the continuous supply of nutrients from coastal upwelling.
To characterize the dynamics of the system, a combination
of field assets and measurements systems was deployed,
including ship surveys, buoys, and autonomous underwater
vehicles. The experiment was a collaboration between the
NRL “Bio-Optical Studies of Predictability and Assimilation
for the Coastal Environment (BIOSPACE)” project, Multi-
disciplinary University Research Initiative (MURI) project
“Rapid Environmental Assessment Using an Integrated
Coastal Ocean Observation-Modeling System (ESPRESSO),”
and the Monterey Bay Aquarium Research Institute (MBARI).

The objective of the NRL participation in the experiment was
to study the variability and predictability of underwater light
and coupled bio-optical and physical properties of the water
column on time scales of 1–5 days.
[5] The structure of the paper is as follows: Section 2

describes observations, models, and data assimilation
schemes used in this study. The bio-optical physical condi-
tions during the data assimilation experiments are described
in section 2.1.3.3. The design of data assimilation experi-
ments is described in section 3. Section 4 presents results
of the data assimilation experiments. Section 5 is devoted
to discussions and conclusions.

2. Methods

2.1. Observations

2.1.1. Physical Observations
[6] Observations of winds, temperature, and salinity from

the Monterey Bay Aquarium Research Institute (MBARI)
surface moorings M1 (122.02�W, 36.74�N) and M2
(122.40�W, 36.67�N) are used in this study (Figure 1).
Near-surface 3 m wind speed and direction were measured
by a MetSys wind monitor. Temperature and salinity were
measured by Sea-Bird MicroCAT CTD sensors at 12 depths
between 1 and 350 m. According to the manufacturer’s stated
accuracy, the data are expected to be accurate to within
about 0.005�C and 0.006 practical salinity units (psu).
[7] Surface current observations used in this study were

derived from the California Coastal Ocean Current Mapping
Program’s HF radar network (www.cocmp.org). Surface
currents were estimated based on inputs from seven HF
radar sites (Figure 1). Vector currents were estimated on a
Cartesian grid with a horizontal resolution of 3 km by com-
puting the best fit vector velocity components using all
radial velocity observations within a radius of 3 km for each
grid point each hour [Paduan et al., 2006]. Several studies
have investigated the performance of the Monterey Bay
HF radar network by comparing the radar-derived currents
with in situ velocity observations and by comparing radar-
to-radar velocity estimates on the overwater baselines
between radar sites [e.g., Paduan et al., 2006]. Consistent
uncertainty values emerge in the range of 7–9 cm/s for the
remotely estimated velocities.
[8] The R/V Point Sur occupied 25 hydrographic and

optical stations from 2 to 13 June 2008 (Figure 1). Temper-
ature and salinity depth profiles with 1 m vertical resolution
were derived from Sea-Bird SBE 9+ CTD measurements
using standard Sea-Bird processing software. Comparisons
of the moored data with adjacent shipboard profiles show
agreement to generally be within 0.1�C and 0.01 psu.
[9] Four NRL and two Rutgers University SLOCUM

gliders [Schofield et al., 2007] were deployed during a
period of 2 weeks of surveys with the R/V Point Sur. The
gliders were equipped with a SeaBird CTD and collected
temperature and salinity profiles up to 200 m depth mostly
inside the Bay because the navigation of gliders outside
the bay became difficult due to strong wind–driven currents
(~1–2 knots).
[10] Satellite surface temperature data, available in situ

temperature, and salinity profiles from the Global Ocean
Data Assimilation Experiment (GODAE) data set (http://
www.usgodae.org/) are used in this study for the assimilation
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Figure 1. Map of the observational assets during June 2008
field program: MBARI moorings M1 and M2 locations; R/V
Point Sur stations and water sample locations; HPLC sam-
ple locations; glider tracks (shown schematically); AUV
DORADO survey; locations of HF radar sites.
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into the Monterey Bay model described in section 2.2.
The description of the data set, processing, and quality
control procedures are described in Cummings [2005] and
Cummings et al. [2009].
2.1.2. Satellite MODIS-Aqua Ocean Color Data:
Chlorophyll a Concentration and Phytoplankton
Absorption Coefficient
[11] The MODIS-Aqua satellite imagery was processed

using the NRL Automated Processing System (APS). APS
is a complete end-to-end system that includes sensor
calibration, atmospheric correction (with near-infrared
correction for coastal waters), and bio-optical inversion.
APS incorporates, and is consistent with, the latest NASA
MODIS code (SeaDAS) [Gould et al., 2011; Martinolich
and Scardino, 2011].
[12] In this study, estimates of the chlorophyll a (Chl)

and absorption coefficient due to phytoplankton at 488 nm
(aph(488)) from MODIS-Aqua imagery on 5 and 10 June
2008 were assimilated into the bio-optical, physical model
described in section 2.2. Chlorophyll data are derived by
OC3M algorithm [O’Reilly et al., 2000], while aph(488) data
are derived by using a quasi-analytical algorithm (QAA)
[Lee et al., 2002] at 1 km pixel resolution. Data are inter-
polated to the model grid spatially and temporally to 0Z and
12Z (with 12hdata assimilation update cycle (see section 3)).
[13] Errors in satellite derived products as chlorophyll a

and absorption are usually poorly known. McClain [2009]
stated that many recent investigations in comparison of sat-
ellite derived products with water samples or high-
performance liquid chromatography (HPLC) data were
inconclusive mostly due to differences in the pigment
measurement methodology, i.e., fluorometric for water
samples versus high-pressure liquid chromatography
(HPLC). In McClain [2009]: “The satellite data product
accuracy goals generally accepted by the international mis-
sions are �5% for water-leaving radiances and �35% for
chlorophyll in the open ocean.” At the same time, it is also
stated that errors differ regionally. Lee et al. [2010] reported
error in estimation of absorption around 10% for values
below 0.1 m�1, which is an about average value for the
Monterey Bay area.
2.1.3. Bio-Optical Observations Used for Model
Predictions Verification
2.1.3.1. Extracted Chlorophyll From the Water Samples
[14] Water was collected at up to 12 depths at each R/V

Point Sur station (Figure 1). Samples (280 ml) were taken
from the Niskin bottles and filtered through 25 mm
Whatman GF/F (glass fiber filters) at 5–7 mm Hg pres-
sure. The filters were then placed into glass scintillation
vials with 10 ml of 90% acetone and frozen for 24 h to
allow chlorophyll extraction [Venrick and Hayward,
1984]. Samples were allowed to warm for several hours
in the dark before fluorescence measurements were per-
formed with a Turner 10-AU Fluorometer using standard
methods [Holm-Hansen et al., 1965; Lorenzen, 1966]. To
correct for phaeophytin interference, each sample was then
acidified with three drops of 5% HCl to convert chloro-
phyll to phaeophytin. The ratio of these two measurements
is directly proportional to chlorophyll concentration.
2.1.3.2. High-Performance Liquid Chromatography Data
[15] Water samples (540 ml) collected from near-surface

(~0.5 m) Niskin bottles were filtered onto Whatman glass

fiber filters (GF/F). The high-performance liquid chromatog-
raphy (HPLC) analysis provided pigment indices and
proportion factor for microplankton, nanoplankton, and
picoplankton [Vidussi et al., 2001]. The pigment data
indicated that the microplankton fraction was composed
predominantly of diatoms (based on the presence of fuco-
xanthin). For this analysis, the nano- and picoplankton frac-
tions were combined to represent the “small phytoplankton”
in our coupled bio-optical physical model (section 2.2).
Claustre et al. [2004] reported 11.5% uncertainty for fuco-
xanthin and 7% for chlorophyll a.
2.1.3.3. Nitrate Data
[16] Propeller-driven AUV such as the MBARI manu-

factured DORADO has been described in Bellingham et al.
[2000] and Ryan et al. [2009]. The DORADO was deployed
on 3 June 2008 in the Monterey Bay (Figure 1), and instru-
ments on board included in situ ultraviolet spectrophotome-
ter sensor that measured nitrate concentrations [Johnson and
Coletti, 2002].

2.2. Coupled Physical, Bio-Optical Model of the
Monterey Bay

[17] The Monterey Bay model (called the Navy Coastal
Ocean Model (NCOM) Innovative Coastal-Ocean Observ-
ing Network (ICON)) consists of a physical model
[Shulman et al., 2007], which is coupled to a biochemical
model [Chai et al., 2002]. The initial model development
started under the National Oceanic Partnership Program
ICON project. The physical model of the Monterey
Bay is based on the NCOM model, which is a primitive-
equation, 3-D, hydrostatic model. It uses the Mellor-
Yamada level 2.5 turbulence closure scheme and the
Smagorinsky formulation for horizontal mixing [Martin,
2006; Barron et al., 2006]. The NCOM ICON model is
set up on a curvilinear orthogonal grid with resolution
ranging from 1 to 4 km. The model domain is shown on
Figure 1. The model is forced with surface fluxes from
the Coupled Ocean and Atmospheric Mesoscale Prediction
System (COAMPS) [Doyle et al., 2009] at 3 km horizon-
tal resolution. The 3 km resolution COAMPS grid mesh is
centered over Central California and the Monterey Bay.
The biochemical model (the Carbon, Silicon, Nitrogen
Ecosystem (CoSINE) model) [Chai et al., 2002; Shulman
et al., 2011] of the NCOM ICON simulates the dynamics
of two sizes of phytoplankton, small phytoplankton cells
(<5 mm in diameter) and diatoms, two zooplankton
grazers, nitrate, silicate, ammonium, and two detritus pools
(Figure 2). Constituents from the biochemical model are
used to estimate chlorophyll and inherent optical proper-
ties (IOPs) based on the methodology outlined by Fujii
et al. [2007]. For example, the model chlorophyll concen-
tration (chl) and absorption due to phytoplankton (aph(l))
are estimated based on the following:

chl ¼ chl1�P1þ chl2�P2 (1)

aph lð Þ ¼ a�1 lð Þ�chl1�P1þ a�2 lð Þ�chl2�P2
a�i lð Þ ¼ a�i; highlightð Þ lð Þ� 1� fθ;i

� �Þ þ a�i; lowlightð Þ lð Þ�fθ;i

fθ;i ¼ chli=cni � θmin

θmax � θmin

(2)
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where P1 is the small phytoplankton concentration, P2 is the
diatoms concentration, aph(l) is the absorption coefficient
due to phytoplankton, l is the wavelength, a�1 lð Þ and a�2 lð Þ
are chlorophyll-specific absorption coefficients by small phy-
toplankton and diatoms , a�i; highlightð Þ lð Þ and a�i; lowlightð Þ lð Þ are
chlorophyll-specific absorption coefficients at high and low
light by each phytoplankton group [Fujii et al., 2007], chli
are chlorophyll to nitrogen conversion coefficients, cni are
carbon to nitrogen conversion coefficients, fθ, i is the phyto-
plankton size fraction, and θmin and θmax are the minimum
and maximum phytoplanktonic chlorophyll to carbon ratios
[Fujii et al., 2007]. Absorption in equation (2) is modeled
as a sum of absorptions from small phytoplankton and dia-
toms. The chlorophyll-specific absorption coefficients for
small phytoplankton and diatoms are modeled separately,
taking into account their photoadaptive state (e.g., their spe-
cific chlorophyll to carbon ratio). This requires specification
of high/low light absorption coefficients for each phyto-
plankton group (small phytoplankton and diatoms). For
more details, see Fujii et al. [2007]. It is known that phyto-
planktonic chlorophyll to carbon ratio is not constant and
depends on light, nutrients, temperature, etc. However, to
model the ratio as variable will require introduction of more
state variables, as well as more highly uncertain model
parameters into the biochemical model. Because the
objective of the paper is modeling on short-term time scales
(1–5 days), we prefer to use (1)–(2) relations rather than
to increase a number of the biochemical model state vari-
ables and highly uncertain model parameters. Only P1 and
P2 are prognostic variables in (1) and (2).
[18] Phytoplankton photosynthesis in the biochemical

model is driven by photosynthetically active radiation (PAR),
which is estimated based on the shortwave radiation flux

from the COAMPS model. The Penta et al. [2008] scheme
is used for PAR attenuation with depth.
[19] Open boundary conditions for the NCOM ICON are

derived from the regional model of the California Current
(NCOM CCS) [Shulman et al., 2007]. The NCOM CCS
has a horizontal resolution of about 9 km, and the model is
forced with atmospheric products derived from the
COAMPS [Doyle et al., 2009]. As in NCOM ICON model,
the biochemical model of the NCOM CCS is also the nine-
compartment model of Chai et al. [2002].
[20] Open boundary conditions for physical variables (tem-

perature, salinity, velocities) for the regional NCOM CCS
model are derived from the NCOM global model [Rhodes et
al., 2002;Barron et al., 2004], which has 1/8º horizontal reso-
lution. The NCOM global model does not have a biochemical
model to derive open boundary conditions for the biochemical
model of theNCOMCCS.For this reason, biochemical tracers
of the NCOM CCS were spun up from the climatological
values of the nutrients (nitrate and silicate from The World
Atlas) [Garcia et al., 2006] and background values for other
biochemical variables from October 1998 to June 2008.

2.3. Assimilation of Physical Observations

[21] For the assimilation of physical observations (tem-
perature and salinity), the NCOM ICON model uses the
Navy Coupled Ocean Data Assimilation (NCODA) system
[Cummings, 2005; Cummings et al., 2009]. The NCODA is
a fully 3-D multivariate optimum interpolation system. As-
similation of temperature and salinity data is performed every
12 h (assimilation cycle). The NCODA assimilates satellite
altimeter observations, satellite surface temperature, as well
as available in situ vertical temperature and salinity profiles
from XBTs, ARGO floats, moored buoys, and gliders from
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the Global Ocean Data Assimilation Experiment (GODAE)
data set. The description of the data sets, processing, and
quality control procedures are described in Cummings

[2005] and Cummings et al. [2009]. Results of glider, ship,
and satellite data assimilation into the NCOM ICON model
are described in Shulman et al. [2009, 2010].
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2.4. A Multivariate Data Assimilation of Bio-Optical
Properties (BOMA)

2.4.1. Kalman Gain Update
[22] To preserve the robustness of the existing assim-

ilation system for physical fields (NCODA), we decided to
decouple updates to the physical fields from the updates to
the components of the ecosystem model. To assimilate bio-
optical measurements into the ecosystem model, we used
reduced-order Kalman filter with a stationary forecast error
covariance.
[23] The analysis fields for the bio-optical model state

variables were updated using Kalman update equations:

xa ¼ xf þ K y� Hxf
� �

(3)

K ¼ PxyP
�1
yy (4)

where xa and xf are the vector of analyzed and forecasted
bio-optical properties, y are available observations, H is the
observational operator that maps the model state onto avail-
able observations, and K is the Kalman gain matrix. Covari-
ance matrices Pxy and Pyy in the Kalman gain equation (4)
are the cross-covariance between forecast and observation
errors and the innovation error covariance matrixes respec-
tively. For a linear measurement operator H, these covari-
ance matrices become:

Pxy ¼ Pf HT (5)

Pyy ¼ HPf HT þ R (6)

where Pf is the forecast error covariance matrix, and R is
the combined covariance of measurement and representation
errors.
2.4.2. Forecast Error Covariance Model
[24] Similar to Cane et al. [1996] and Nerger and Gregg

[2007], we used a stationary form of the error covariance
Pf. We specified the forecast error covariance Pf using an
ensemble of model states Xens drawn from a historic model run:

Pf � aPens ¼ aE X ens � E X ens½ �ð Þ X ens � E X ens½ �ð ÞT
h

(7)

where a is a scalar that scales the climatological ensemble to
be consistent with the statistics of model innovations. Twin
data assimilation experiments were conducted, when
pseudo- “observations” sampled from the “true” model run
were assimilated into the model run with different initial
conditions from the “true” run. Optimal value of a = 0.01
was determined based on minimization of misfits between
“true” and twin data assimilative run.

[25] We drew the ensembleXens of ~700model states from a
monthlong run of nonassimilated model (see section 3 for
details of the run setup). To reduce the storage requirements
and because the ensemble approximation Pens was rank defi-
cient, we stored matrix Pens using a truncated series of eigen
functions estimated from SVD of Xens:

Pens � ZΛZT

where Z is the matrix of orthonormal 3-D eigen functions
(EOFs) and Λ is the diagonal matrix of eigen values. We
retained 100 eigen functions that captured 98% of the
variance in the ensemble covariance Pens.
[26] In our experiments, we had more observations than

ensemble members. Hence, it was more efficient to imple-
ment the inverse of covariance Pyy in the space of the EOF
coefficients instead of the observation space formulation in
equation 6. To transform the Pyy inverse from observational
space to EOF space, and to the form that requires inverse of
only R matrix, we used the Sherman-Morrison-Woodbury
formula [Barth et al., 2011] as follows:

P�1
yy ¼ aHZΛZTHT þ Rð Þ�1 ¼ UUT þ Rð Þ�1 ¼

¼ R�1 � R�1Uð Þ I þ R�1Uð ÞTU
h i

R�1Uð ÞT (8)

where

U ¼ ffiffiffi
a

p
HZ

ffiffiffiffi
Λ

p
(9)

2.4.3. Observation Error Covariance Model
[27] The combined covariance R of measurement and

representation errors is usually poorly known. As we stated
in section 2.1.2, “the satellite data product accuracy gener-
ally accepted by the international missions are �5% for
water-leaving radiances and �35% for chlorophyll a in the
open ocean” [McClain, 2009]. However, errors differ
regionally. As it is shown in section 4, the coupled physical,
bio-optical model (section 2.2) is under productive in the
Bay without data assimilation, and it is desirable to increase
influence of observations on model predictions. We assumed
that covariance R had diagonal structure (uncorrelated
errors) and was stationary and proportional to the variance
of the observed field. We set the variance of R to be equal
to 10% of the field variance. The resulting magnitude of
the measurement error was in agreement with uncertainty
studies [Lee et al., 2002, 2010] of the QAA satellite retrieval
algorithm that was used in our study (section 2.1.2).
2.4.4. Localization
[28] To mitigate for the presence of spurious correlations

in our ensemble approximation to the forecast error

Table 1. Description of the Model Runs

Assimilation Multivariate Update

Runs Physics (NCODA) MODIS Chl (BOMA) MODIS aph(488) (BOMA) Small Phytoplankton Diatoms Nitrate

Run 1 No No No N/A N/A N/A
Run 2 Yes No No N/A N/A N/A
Run 3 Yes Yes No Yes Yes No
Run 4 Yes No Yes Yes Yes No
Run 5 Yes Yes No Yes Yes Yes
Run 6a Yes Yes No Yes Yes Yes

aAdjustment of nitrate based on temperature versus nitrate statistical relation (see section 3).
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covariance equation (7) and to exclude remote observations
from the analysis of the local grid point, we localized the
forecast error covariance Pens using the box-car localization
function:

Pf ¼ Cloc � Pens (10)

Cloc x1; ; x2ð Þ ¼ c x1; x2ð Þ ¼ 1if x1 � x2k k2≤Lloc
c x1; x2ð Þ ¼ 0if x1 � x2k k2 > Lloc

�
(11)

where Lloc is the localization distance. The choice of the
localization distance represents a challenge. In Hu et al.
[2012], for assimilation of satellite-derived chlorophyll
observations, the localization distance was set up to 100 km.
In our case, this is approximately the size of the modeling
domain. Through conducted twin experiments, we established

that Lloc of 10 km was appropriate for our domain. We only
used localization in one of our runs (run 4 in section 3).
When localization was used, we implement Kalman filter
equations (3–4) as a set of independent filters, with each
filter updating a single water column. Because we used the
box-car localization function (equation (11)), the update for
each water column was equivalent to using nonlocalized filter
that only accounted for observations within the localization
distance Lloc:

xa iwcð Þ ¼ xf iwcð Þ þ K yloc � Hlocx
f

� �

where iwc are the indices of grid points in a given water
column, yloc are observations within the localization radius
Lloc, andHloc is the observational operator that maps the model
state of the updated water column iwc onto observations yloc.
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Figure 4. Model-predicted SSTs and surface currents for runs 1 and 2 (see section 3 for model runs design).
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3. Bio-Optical, Physical Conditions During Data
Assimilation Experiments

[29] Data assimilation experiments described in this study
were conducted for the time frame from 5 to 10 June 2008.
Observed wind velocities at MBARI moorings (Figure 3)
indicate that this period was characterized by steady upwell-
ing winds. At the beginning of the experiment, 33 h low-
pass-filtered HF radar surface currents indicate a southward
flow along the entrance to the bay that separates a well-
defined cyclonic eddy in the Bay and an anticyclonic circu-
lation offshore (Figure 3). Five days later (Figure 3), HF
radar data show weakening of the cyclonic circulation.
Coincident with this weakening of cyclonic circulation and
currents, conditions for phytoplankton growth in the Bay
improved as indicated by the increase in surface concentra-
tions of chlorophyll a (Figure 3). In accord with Figure 3,
the satellite-derived SST images from MODIS-Aqua
satellite show development and strengthening of a cold fila-
ment along the entrance to the Bay, separating warm, less

productive anticyclonic circulation offshore from the more
productive waters of the Bay.

4. Design of Data Assimilation Experiments

[30] Table 1 lists the runs and their attributes considered in
this study.
[31] Run 1 is the base run of the NCOM ICON model

described in section 2.2. The run was initialized from the
NCOM CCS model on 22 May 2008 and was run until
the end of June without any assimilation of physical or
bio-optical observations presented in section 2.1. The output
from run 1 (during the month of June) is used to estimate
error covariance Pf in accord with section 2.4. All runs
described below started from the restart file from run 1
(physical and bio-optical state variables) on 5 June 00Z
and were run for 5 days until 10 June 00Z.
[32] Run 2 is the run with the assimilation of physical

observations listed in section 2.1.1 with a 12 h data assimi-
lation cycle. Therefore, for each 12 h of the model run,
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Figure 5. Locations of R/V Point Sur water sample sections A (taken 9 June) and B (taken 10 June) (top
insert); observed (second row) andmodel-predicted (runs 1 and 2) temperature profiles along sections A and B.
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NCODA assimilated physical observations and created a
new restart file (nowcast) with updated (analyzed) tempera-
ture and salinity fields. The next segment of the model run
was started from this NCODA created nowcast and was
run for 12 h until the next model restart file is created. None
of the bio-optical data listed in section 2.1.2 were assimi-
lated in run 2. Comparisons of run 2 with the base run 1
highlight the impact of just physical data assimilation on
the model predictions of physical, as well as bio-optical
properties on time scales of 1–5 days.
[33] Run 3 is the run with the assimilation of physical

data as in run 2, but for each 12 h, MODIS-Aqua Chl data
(described in section 2.1.2) are assimilated using BOMA
(section 2.4). In accord with (3), the only analyzed
(updated) bio-optical properties were P1 (small phyto-
plankton) and P2 (diatoms). Therefore, for each 12 h of
the model run, the NCODA assimilated physical observa-
tions and created a new restart file with updated (analyzed)
temperature and salinity fields. Using this NCODA created
restart file, the BOMA assimilated MODIS-Aqua Chl data
and created a new restart file (nowcast) with updated
(analyzed) P1 and P2. The next segment of the model
run was started from this BOMA created restart file and
was run for 12 h until the next model restart file is

created. Comparisons of runs 3 and 1 show the impact
of assimilations of physical, as well as MODIS-Aqua
Chl data on the model predictions of bio-optical proper-
ties. We found that no localization was needed to assimi-
late MODIS-Aqua Chl data into the model.
[34] Run 4 is a clone of run 3, but the MODIS-

Aqua phytoplankton absorption coefficient at 488 nm
(aph(488)) data are assimilated in the model instead of
the MODIS-Aqua Chl data as in run 3. Unlike run 3, we
found that localization was necessary for assimilation of
phytoplankton absorption data. Localization distance Lloc
(in section 2.4.4) was set to 10 km. Comparisons of runs
3 and 4 will provide the impact of the assimilation of
surface absorption coefficient versus chlorophyll data on
the model predictions of bio-optical properties on time
scales 1–5 days.
[35] Run 5 is a clone of run 3. However, the model nitrate

is also updated together with the phytoplankton (P1 and P2)
through the multivariate data assimilation BOMA in accord
with section 2.4. Comparisons of runs 3 and 5 show the
impact of also updating nitrate through multivariate assimi-
lation on the model predictions of bio-optical properties.
[36] In the described data assimilative runs 3–5, for each

data assimilative cycle (12 h), the assimilation of physical
observations (through NCODA) is independent from the
assimilation of bio-optical observations (through BOMA).
In run 6, we introduced an instantaneous update of the model
nitrate based on updated temperature fields (through NCODA).
For each data assimilation cycle (12 h), the updated tempera-
ture from the NCODA is used to instantaneously update nitrate
fields through the observed statistical relations between
temperature and nitrate based on the AUV DORADO survey
(section 2.1.3) conducted on 3 June prior to the start of the data
assimilation experiments (5 June). The updated nitrate field is
written into the NCODA-created restart file. Using this
NCODA created restart file, the BOMA assimilated MODIS-

Table 2. RMSE Between Observed and Model-Predicted Distri-
butions of Temperature and Salinity at Water Sample Sections A
and B (Figure 3)a

Temperature Salinity

Section A Section B Section A Section B

Run 1 1.00 1.0 1.00 1.00
Run 2 0.78 0.86 0.35 0.82

aRMSE is normalized by the RMSE for the base run 1 (0.9� and 0.06 psu
for section A; 0.57� and 0.06 psu for section B).
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Figure 6. Observed MODIS-Aqua– and model-predicted chlorophyll distributions on 10 June 2008.
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Aqua Chl data and created restart file (nowcast) with updated
(analyzed) P1, P2, and nitrate fields (as in run 5). Comparisons
of runs 5 and 6 provide the impact of the instantaneous update
of nitrate fields (based on updated physical fields (tempera-
ture)) on bio-optical properties predictions.

5. Results

5.1. Assimilation of Physical Data

[37] Figures 4 and 5 provide a comparison of physical
properties between runs 1 and 2 (without and with assimila-
tion of physical data, see section 3 and Table 1). There are
significant differences in predictions of surface and subsur-
face physical properties: Run 2 matches much better with
observed SSTs (Figure 3), as well as observed subsurface
temperature distributions from the water samples (Figure 5).
This is also supported by the RMS errors (RMSEs) between
observed water samples and model-predicted temperature
and salinity fields presented in Table 2. RMSEs for run 2
are reduced by 14%–65% in comparison to the base run 1.
Concerning currents, run 2 is also better defined than in
run 1 cyclonic circulation in the Bay.
[38] Figure 6 provides a comparison of surface model–

predicted chlorophyll distributions for runs 1 and 2. Without
the assimilation of MODIS-Aqua Chl, the model predicts
much lower chlorophyll values in the Bay for both cases of
with (run 2) and without (run 1) assimilation of physical
observations.

5.2. Assimilation of Satellite-Derived
Bio-Optical Properties

[39] In agreement with satellite observations, the assimila-
tion of MODIS-Aqua Chl increased the model productivity
inside the bay and decreased productivity outside the bay
for run 3 (Figure 6). The assimilation of aph(488) (run 4) also
increased productivity inside the Bay; however, it also
created an artificial tongue of high Chl values offshore from
the northern part of the domain along the coast. This might be
a result of difficulties in assimilation of offshore values of
absorption, which are significantly lower in comparison to
the values in the Bay. As stated in section 3, run 4 was done
with the localization (see section 2.4.4). This was required to
avoid noisy updated fields and to exclude remote aph(488)
observations from the analysis of the local grid point.
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Figure 7. Comparisons of observed (sections A and B, see locations on Figure 3) and model-predicted
subsurface chlorophyll distributions at water sample locations.

Table 3. RMSE Between Observed and Model-Predicted Chloro-
phyll Distributions at Water Sample Sections A and B (Figure 3)a

Section A Section B

Run 1 1.00 1.00
Run 2 1.01 1.02
Run 3 0.71 0.95
Run 4 0.65 0.83
Run 5 0.70 0.93
Run 6 0.71 0.94

aRMSE is normalized by the RMSE for the base run 1 (5.8 mg/m3 for
section A; 8.6 mg/m3 for section B).
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[40] Figure 7 provides comparisons of the model-predicted
subsurface Chl distributions to observed distributions (from
water bottle analyses) along sections A and B (recall that
chlorophyll data from the water samples were not assimilated).
The assimilation of surface MODIS-Aqua Chl improved not
only surface (Figure 6) but also subsurface model Chl predic-
tions in the Bay for data assimilative runs 3–4. Quantitatively,
this is also reflected in Table 3, where RMSEs between
observed Chl from water samples and corresponding model-
predicted Chl values (at water sample locations) are presented.
All RMSE metrics are normalized by the corresponding
RMSE metric for the base run 1 (no assimilation of physical
as well as bio-optical properties). Table 3 shows similar values
of RMSEmetrics for runs 1 and 2. This indicates that while the
assimilation of physical observations improved the model
predictions of physical properties, the model predictions of
Chl are not improved on time scales 1–5 days. Results show
that the assimilation of observed surface Chl or aph(488)
provides improvement in subsurface Chl predictions ranging
from 5% to 35%. While the assimilation of MODIS-Aqua
bio-optical products improved subsurface predictions for
runs 3 and 4, the model subsurface predictions of Chl are still
underestimated in comparison to the water sample profiles
(Figure 7). One of the reasons might be that MODIS-Aqua
bio-optical data are assimilated as observed surface values,

while satellite data provide an estimate of the average, for
example, chlorophyll concentration over the layer between
the surface and one attenuation depth. In this case, based on
observed profiles on Figure 7, MODIS-Aqua Chl data should
somewhat underestimate the “true” surface Chl (this is also
illustrated by a comparison of Chl values from the water
samples taken at surface and MODIS-Aqua Chl values at
water sample locations (comparison is not shown here)). For
this reason, assimilation of satellite Chl data (as well as
aph(488)) as surface observations should result in under-
estimated surface and subsurface Chl values in model predic-
tions, which is illustrated in Figure 7.
[41] Assimilation of MODIS-Aqua bio-optical observations

increased (decreased) the concentration of diatoms (small
phytoplankton) inside the Bay in comparison to nonassimilative
runs 1 and 2 (Figure 8). This is supported by comparisons of
model predictions with observed fractions of microplankton
(analog of diatoms in the model) versus total phytoplankton
from HPLC data (section 2.1.3). Comparisons are presented
on Figure 9. The HPLC data indicate that there was steady
presence of diatoms in the Bay between 5 and 10 June, with
the fraction of diatoms to total phytoplankton population in
the range of 90%. Runs 1 and 2 show variable fractions of
diatoms to the total phytoplankton population ranging from
20% to 80%, but mostly below the observed HPLC fractions.
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Figure 8. Model-predicted surface diatoms and small phytoplankton distributions.
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Figure 9. Observed and model-predicted fractions of diatoms to the whole phytoplankton populations at
locations of R/V Point Sur water samples. Green, HPLC observed fractions; blue, run 1; light blue, run 2;
brown, run 3; red, run 4.
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However, for run 3 (run with assimilation of MODIS-Aqua
surface chlorophyll), the fraction of diatoms increased and
partitioning between diatoms and small phytoplankton is in
much better agreement with the independent, nonassimilated
HPLC observations. This is also reflected in the RMSE

metrics presented in Table 4. With the assimilation of
MODIS-Aqua Chl data, the RMSE between HPLC observed
and model-predicted fractions of diatoms to the total phyto-
plankton is more than twice smaller for run 3 in comparison
to the RMSE for nonassimilative base run 1. There are also
improvements in fractions of diatoms to the total phytoplank-
ton predictions for run 4 (assimilation of aph(488)) after a
couple days of assimilation (Figure 9 and Table 4).

5.3. Impact on Predictions of Nitrate Distributions

[42] Figure 10 provides comparisons of the observed and
model-predicted subsurface nitrate distributions along water
sample sections A and B. Runs 1 and 2 without assimilation
of MODIS-Aqua Chl data and run 3 with assimilation of
MODIS-Aqua Chl data show underestimated values of
subsurface nitrate distributions in comparison to water
samples. Therefore, while the assimilation of MODIS-Aqua

Table 4. RMSE Between HPLC Fractions and Model-Predicted
Fractions of Diatoms to Total Phytoplankton Populationa

RMSE

Run 1 1.00
Run 2 0.92
Run 3 0.43
Run 4 0.84
Run 5 0.42
Run 6 0.44

aRMSE is normalized by the RMSE for the base run 1 (0.52).
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Figure 10. Observed (top row) and model-predicted nitrate distributions for runs 1–6 at water sample
sections A and B.
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Chl improved model subsurface Chl distributions (Figure 7)
and partitioning between diatoms and small phytoplankton
(Figure 9), it had a minimal impact on nitrate fields in the
model. Results are similar for run 4 with the assimilation of
aph(488) (not shown here). For run 5, when phytoplankton
(and) and nitrate are updated through the BOMA, the subsur-
face nitrate distributions are even more underestimated
(Figure 10). This is also illustrated by the scatterplots of
observed (from water samples) versus the model nitrate fields
presented on Figure 11.

[43] As it was demonstrated in section 4.2, the model run
1 without assimilation of MODIS-Aqua Chl underestimates
surface and subsurface Chl distributions (Figures 6 and 7).
As a result, the assimilation of surface Chl data tends to
increase model Chl values and increase phytoplankton
population, especially diatom population in the Bay (Figures 8
and 9). However, the increase in the model phytoplankton
population results in the decrease of nutrients due to the
uptake by phytoplankton for growth, which is statistically
inherited in the model multivariate error covariances used
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in the BOMA (section 2.4). This is why the assimilation of
MODIS-Aqua Chl increased the model bias in predictions
of nitrate values even more for run 5 (Figures 10 and 11),
when not only phytoplankton but also nitrate are also
updated through the multivariate data assimilation. Note
that predictions of Chl and partitioning between diatoms
and small phytoplankton for run 5 are similar to run 3
(see Tables 3 and 4).
[44] Figure 12 shows temperature versus nitrate scatterplots

of the AUV DORADO survey, from the water samples, and
the model runs. The average temperature versus nitrate statis-
tical relation for the AUV survey is very similar to the relation
for the water samples, while the AUV survey was taken on
3 June which is about 6 days prior to water samples surveys.
This indicates persistence of the same statistical relation
between temperature and nitrate on time scales of a week.
In run 6 (section 3), for each data assimilation cycle (12 h),
the statistical relation between T and nitrate (Figure 12) from
the AUV DORADO on 3 June is used to instantaneously
update nitrate fields based on the temperature from the
NCODA update. The nitrate predictions in run 6 improved
significantly and match nitrate observations much better in
comparison to other runs (Figures 10 and 11). Therefore,
the instantaneous update of nitrate (based on statistical
relations between temperature and nitrate) corrected the a
priori model underestimation of the nitrate and the reduction
of nitrate by the multivariate update. Note that predictions of
Chl and partitioning between diatoms and small phytoplank-
ton for run 6 are similar to data assimilation runs 3 and 5
(see Tables 3 and 4).

6. Conclusions and Discussions

[45] Data assimilation experiments were conducted during
5 days of steady upwelling in the Monterey Bay area. The
results show that while the assimilation of physical observa-
tions improved the model predictions of physical properties,
the model underestimates productivity inside the Bay with
or without assimilation of physical observations. At the
same time, assimilation of MODIS-Aqua–derived optical
properties (chlorophyll or absorption due to phytoplankton)
significantly improved surface and subsurface agreement
between the model and observations. Results show that
the reduction in RMSEs between model and independent
water samples ranges from 5% to 35% in contrast to the
nonassimilative run.
[46] While the assimilation improved the model predic-

tions, the model subsurface Chl distributions retained an
underprediction bias as compared to observed profiles from
water samples. One of the reasons might be that MODIS-
Aqua bio-optical data are assimilated as observed surface
values, while satellite data provide an estimate of the aver-
age, for example, chlorophyll concentration over the layer
between the surface and one attenuation depth. The assimila-
tion of satellite-derived products, not as surface values, but
rather as averages over attenuation depth values, is consid-
ered as a topic of our future research.
[47] Assimilation of bio-optical data also improved frac-

tionation of phytoplankton biomass between diatoms and
small phytoplankton in the model. Without assimilation,
the percentage of large diatoms varied during the experiment
between 20% and 80%. In contrast, HPLC measurements

showed the fraction of diatoms to total phytoplankton popu-
lation in the range of 90%. However, runs with the assim-
ilation of MODIS-Aqua surface chlorophyll produced much
better agreement with the independent, nonassimilated HPLC
observations.With theassimilation, theRMSEbetweenHPLC
observed and model-predicted fractions of diatoms to the
total phytoplankton is less than half smaller than the RMSE
for nonassimilative run. There are also improvements in frac-
tions of diatoms to the total phytoplankton predictions for
the run with assimilation of aph(488) after a couple days of
assimilation.
[48] To extend of our knowledge, we believe that the pres-

ent study is the first demonstration of IOP (aph(488)) assim-
ilation into coupled physical, biochemical dynamical model,
as well as the first demonstration of a capability to improve
the model-predicted fractionation of phytoplankton biomass
between diatoms and small phytoplankton.
[49] Model runs with or without assimilation of MODIS-

Aqua observations show underestimated values of nitrate
distributions in comparison to the water sample observa-
tions. The assimilation of MODIS-Aqua observations did
not improve the model predictions of nitrate. This can be
explained by the fact that multivariate data assimilation
tends to increase phytoplankton population in the Bay (due
to the underestimated a priori Chl values in the model)
and, at the same time, tends to decrease nutrients. The lack
of improvements in nitrate distributions in the model sug-
gests deficiencies in the model nitrate initial and open
boundary conditions, and the need for nitrate observations
for assimilation into the model. These conclusions correlate
with results of the Ourmières et al. [2009] study. Their goal
was an estimation of the basin scale patterns of oceanic
primary production and their seasonal variability. Ourmières
et al. [2009] found that intensive in situ measurements of
biogeochemical nutrients are urgently needed at basin scale
to improve coupled model predictions. Our results showed
that an instantaneous update of nitrate based on statistical
relations between temperature and nitrate (derived from
the AUV observations taken prior to the data assimilation
experiments) corrected the model underestimation of the
nitrate fields.
[50] The experiments conducted in this study were limited

to a 5-day period during a steady upwelling event. More
complicated bio-optical conditions are usually observed
during wind weakening and relaxation, when transitions
from diatoms to other phytoplankton groups might occur
with corresponding drastic changes in bio-optical properties
on time scales of days to a week. This might be a combina-
tion of changes in physical conditions (for example, dinofla-
gellates prefer more stable, stratified conditions), as well as
changes in nutrient distribution, leading to decreasing dia-
toms population and replacement by other phytoplankton
groups, which are capable of prospering at lower nutrients
levels. Also, as demonstrated in Shulman et al. [2011,
2012], dinoflagellates play an important role in changes of
bio-optical properties during the upwelling events. It was
demonstrated that during the upwelling development, dino-
flagellates avoided advection and retained their population
in the Bay due to their vertical swimming ability. The bio-
chemical model considered here does not include modeling
of dinoflagellates dynamics. Inclusion of the dinoflagellates
into the biochemical model and conducting data assimilation
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experiments during the events influenced by their presence
is another topic of our future research.
[51] Our experiments with the ensemble computed from a

monthlong model simulation suggest that ensemble methods
are very capable at capturing complex multivariate relation-
ships between optical properties, phytoplankton biomass,
and ecosystem structure (as represented by small and large
phytoplankton pools in the model). Our preliminary experi-
ments encourage further development of ensemble methods
for bio-optical data assimilation and uncertainty estimation
[Gould et al., 2011].
[52] Finally, in the present study, assimilation of physical

properties through the NCODA and assimilation of bio-
optical properties through BOMA are separated. The adjust-
ment of updated physical and bio-optical variables is
achieved through the coupled, bio-optical physical model
run during the data assimilation cycle. At the same time,
an instantaneous joint update of physical and bio-optical
properties is preferred in order to maintain dynamical con-
sistency between the assimilated physical and bio-optical
fields [see, for example, Anderson et al., 2000, 2001].
The merger of NCODA and BOMA is another topic of our
future research.
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