MEDUSA MEDUSA

Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification Sequestration and Acidification

Julien Palmiéri, Andrew Yool, Katya Popova

NATURAL ENVIRONMENT RESEARCH COUNCIL

Oxford 1-12-2015

UKESM1 and iMARNET

- Development of UKESM1 required the selection of its marine BGC component
- iMARNET project evaluated six UK marine BGC models to select the "best" model
- Models were simulated identically for the present-day and evaluated for nutrient cycles, air-sea CO2 fluxes and primary production
- Evaluation also considered compute cost
- MEDUSA was selected as "best fit" for UKESM1

Philosophy of MEDUSA

- MEDUSA idea : realism/simplicity balance
- Focus on the carbon cycle, export production and surface-to-deep ocean connectivity
- Intermediate complexity approach
- Basic NPZD structure still (broadly) valid, so increment upwards from this :
	- ➔ MEDUSA's double-NPZD structure

Double NPZD - ingredients

• Nitrogen: largely a legacy choice (cf. Fasham)

- Silicon: see diatoms
	- Iron: now well-established that significant regions in iron stress
	- Diatoms: major players in ecosystems; controls on abundance relatively well-understood (large, fast-growing); no (major) mysteries
- Non-diatoms: small phytoplankton are key players in ecosystems, especially oligotrophic ones; modelled as fast-growing generic phytoplankton
	- Zooplankton: micro- and meso- added to complement (= eat) corresponding phytoplankton
- Explicitly modelled pools of slow-sinking organic detritus; implicitly modelled pools of fast-sinking organic + inorganic detritus **Detritus**

P

N

nutrients

Phytop.

Z Zoop.

D

Yool *et al.*, 2013

MEDUSA-2 present-day validation

DIN Chlorophyll

Primary production $\mathsf{Air\text{-}sea\,CO}_{2}$ flux

MEDUSA - UKESM1

-- developments --

New carbonate Chemistry

Carbonate chemistry

- MOCSY (Orr et al., 2015) added to MEDUSA
- Uses up-to-date parameterisations
- Gas transfer schemes updated, harmonised
- Main differences are faster equilibriation (gas transfer) and shallower CCD (MOCSY)
- Air-sea exchange could be optimised (CFCs?)

DMS surface concentration

DMS (dimethylsulfide) needed by the atm. Chem. component

- DMS acts in cloud formation process.
- Can affect cloud coverage within climate change.

DMS surface concentration

DMS diagnostic has been added in MEDUSA.

• Tried 4 different DMS formulations.

MEDUSA - UKESM1 -- Coupling with other component --

2D – CO2 fluxes

Atmosphere component now provides 2D surface [CO²] field (previously – only a global mean surface [CO²] value.)

- More realistic air-sea fluxes
- Changes in local $CO₂$ in and out-gassing.

DMS surface concentration

DMS (dimethylsulfide) needed by the atm. Chem. component

- DMS acts in cloud formation process.
- Can affect cloud coverage within climate change.

Dust (iron) deposition

Dust deposition is important for the iron it provides (or not) in iron limited area.

- Dust dep. extremely important. Controls Primary prod. in large areas through iron limitation.
- UKCA-MEDUSA coupling models biogeoch. changes and feedbacks

related to dust deposition changes.

NEMO-MEDUSA UKCA Phytoplankton (Iron fertilisation in Iron limited area) Dust transported within UKCA Dust deposition

Plus -

- Lots of "invisible" development for MEDUSA to best fit the new NEMO version (3.6)
- Also added an "ideal" tracer to evaluate the water mass ventilation

Yool *et al.*, 2013

DIN Silicic acid Iron

DIC Alkalinity Alkalinity Oxygen

Observed, Pacific $2¹$ $3¹$

 $\bf{0}$ 30

Latitude [°N]

 60 90 -90 -60 -30

 $\overline{30}$

60 90

 $\overline{0}$

Latitude [°N]

Meanwhile, in CMIP5...

DIC

NOC, mean years 32-41: DIC

xkrum, mean years 32-41: DIC

xkrus, mean years 32-41: DIC

pH

NOC, mean years 32-41: ocean pH

xkrum, mean years 32-41: ocean pH

xkrus, mean years 32-41: ocean pH

 $pCO₂$

NOC, mean years 32-41: ocean pCO2

xkrum, mean years 32-41: ocean pCO2

xkrus, mean years 32-41: ocean pCO2

Air-sea flux

NOC, mean years 32-41: CO2 flux

xkrum, mean years 32-41: CO2 flux

xkrus, mean years 32-41: CO2 flux

Surface omega

NOC, mean years 32-41: surface omega

xkrum, mean years 32-41: surface omega

xkrus, mean years 32-41: surface omega

Calcite compensation depth

Carbonate chemistry

- MOCSY (Orr et al., GMD, 2015) carbonate chemistry scheme added to MEDUSA
- Uses up-to-date parameterisations
- Previous scheme (Blackford et al., 2007) remains compile-time default (i.e. if key_mocsy is absent)
- Wanninkhof (2014) Schmidt number and gas transfer velocity schemes added (new default)
- Implementation of MOCSY also harmonises gas transfer velocity across MEDUSA (an old bug)