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Abstract. Tangent linear and adjoint models (TAMs) are ef-

ficient tools to analyse and to control dynamical systems

such as NEMO. They can be involved in a large range of

applications such as sensitivity analysis, parameter estima-

tion or the computation of characteristic vectors. A TAM

is also required by the 4D-Var algorithm, which is one of

the major methods in data assimilation. This paper describes

the development and the validation of the tangent linear

and adjoint model for the NEMO ocean modelling platform

(NEMOTAM). The diagnostic tools that are available along-

side NEMOTAM are detailed and discussed, and several ap-

plications are also presented.

1 Introduction and history

Tangent linear and adjoint models (TAMs in the follow-

ing) are powerful modelling tools. The tangent linear model

(TLM) provides the directional derivatives with respect to a

trajectory of the corresponding non-linear system. The ad-

joint of the TLM gives information about the response of the

system to variations of its input. TAMs are therefore widely

used for variational assimilation applications as well as for

the analysis of physical processes, since they can be used

for sensitivity analysis, parameter identification and for the

computation of characteristic vectors (singular vectors, Lya-

punov vectors, etc.) (see Moore et al., 2004, for an extended

review).

This is particularly true for geophysical applications such

as meteorology and oceanography where many data assimi-

lation systems rely on the availability of such models. How-

ever, only few ocean general circulation models are rou-

tinely provided with their TAM. Among them, one can cite

MITgcm (MIT general circulation model) and ROMS (Re-

gional Ocean Modelling System). They are quite represen-

tative of the two possible routes for deriving tangent and

adjoint model, either using automatic differentiation tools

(MITgcm uses automatic differentiation; Marotzke et al.,

1999) or hand-coded (ROMS’ TAM was developed by a pool

of researchers; Moore et al., 2004).

Automatic differentiation tools have been available for

some time now, and they show some significant advantages

over the hand-coded route. Differentiation of a numerical

code is a tedious and error-prone task, the use of an automatic

tool could alleviate this difficulty. Moreover when an updated

version of the non-linear model is provided the correspond-

ing TAM can in general be obtained effortlessly. Addition-

ally automatic tools offer an important flexibility when one

wants to change the variable to differentiate around. Indeed,

typically, for data assimilation purposes, the TAM is differ-

entiated around the initial condition, while for parameter es-

timation it is differentiated around the sought parameter set.

Most of the time the obtained TAMs are very similar, but in

some cases (e.g. for grid-related parameters) going from one

to another can lead to a significant number of code changes.

On the other hand, automatic differentiation suffers from

some limitations compared to hand-coding. Firstly, some

newer (or archaic) language features may not be supported at

first by the automatic tools; secondly, the numerical perfor-

mance of automatically derived TAM is still relatively poor

compared to that of the hand-coded one. In particular, the

handling of the parallelisation is still an open issue. More-

over, they are not fully automatic since non-differentiable

parts of the original code are still required to be dealt with
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by specialists in the field. All these issues can however be

overcome by mixing automatic and manual coding.

The NEMO ocean engine (Madec, 2008) was previously

known as the OPA model (Madec et al., 1998). It used to have

a TAM (called OPATAM), fully hand-coded. OPATAM was

initially developed for a Pacific Ocean configuration and tar-

geted variational data assimilation applications in the frame-

work of OPAVAR (Weaver et al., 2003, 2005). OPATAM and

OPAVAR were extended to other regional basins (Mediter-

ranean Sea, Rémy, 1999; North Atlantic 1/3◦, Forget et al.,

2008; South Atlantic 1◦) and to the global ocean (ORCA 2◦,

Daget et al., 2009). They were used for methodological stud-

ies such as control of the 3-D model error (Vidard, 2001),

control of the surface forcing and open boundary conditions

(Deltel, 2002; Vossepoel et al., 2003). OPATAM was also

used for sensitivity studies (Sévellec et al., 2008) and sin-

gular vectors (Moore et al., 2003; Sévellec et al., 2009).

For several reasons, mainly because of lack of workforce,

OPATAM, OPAVAR and related developments were not in-

cluded in the standard release of OPA. As a consequence,

synchronisation of OPATAM with OPA’s releases could not

be achieved on a regular basis, and all developments were

on individual branches, without feedback to the OPATAM–

OPAVAR system. The pool of potential users was there-

fore reduced significantly. The complete rewriting of the

model during the transition to NEMO rendered OPATAM

and OPAVAR obsolete. As part of the NEMOVAR initia-

tive (a variational data assimilation with NEMO, Mogensen

et al., 2009) a first prototype of NEMOTAM was obtained

by Tber et al. (2007) using the TAPENADE automatic dif-

ferentiation tool (Hascoët and Pascual, 2004) for a fixed and

somewhat simplified configuration (ORCA 2◦ with all non-

differentiable options switched off, Tber et al., 2007). This

initiative was successful in a reasonable amount of time;

however, even for this simplified configuration substantial

human intervention and additional work was required to ob-

tain an efficient product from the raw generated code. Three

main drawbacks were identified for this application. First, the

memory management and CPU performance of the raw code

were rather poor. Second, the version of TAPENADE at that

time generated single-processor code only and could not han-

dle directives from the C-PreProcessor (CPP keys), which are

widespread in NEMO. Improved memory management and

extensions to support massive parallel processing and CPP

keys are planned in future versions of TAPENADE. Even

as it is now it can be overcome manually with a reasonable

additional effort, so these first two deficiencies are not fun-

damental. There is a third problem that is an incompatibil-

ity between the way automatic differentiation tools handle

non-linearities and the so-called incremental 4D-Var assimi-

lation algorithm used in NEMOVAR, which was the original

motivation for developing NEMOTAM. Indeed when a non-

linearity occurs in the direct model, the value of the corre-

sponding variable needs to be made available to the tangent

and adjoint model to differentiate around. For this purpose,

on the one hand automatic differentiation tools run the direct

model alongside the tangent and store one way or another

the relevant value for the backward integration of the adjoint

(e.g. binomial checkpointing as in Tber et al., 2007). On the

other hand, incremental 4D-Var would perform a minimisa-

tion using only tangent and adjoint integrations, meaning it

would run several instances of the tangent model for one in-

stance of the direct (and possibly at a different resolution),

so direct and tangent models cannot be run alongside each

other.

The modifications required to make any automatic dif-

ferentiation tool compatible with the multi-incremental ap-

proach are really substantial and cannot be done in a short

or medium term. Moreover the numerical performances of

the automatically generated TAMs do not yet allow its use

for “big” configurations and for operational applications. The

writing of an adjoint code is not a simple technical task; this

explains why automatic differentiation tools can seldom be

used as a black box. Numerous potential problems can arise,

and in general they should be dealt with on a case-by-case

basis by someone who masters both the model and differen-

tiation techniques.

From that experience it has been decided to go forward

with the hand-coding approach – the use of automatic differ-

entiation tool being left aside for the time being. We may re-

consider this in the medium or long term though. An optimal

mix of both approaches is likely to be the preferred choice

and lead to a semi-automatic way of generating NEMOTAM.

This paper will first discuss the methodology used for the

NEMOTAM development and explain some of the particular

choices that have been made. Then the validation tools that

are available alongside NEMOTAM will be detailed. Finally

some application examples will be presented.

2 Methodology and choices for NEMOTAM

The approach used in developing NEMOTAM is based on

the well-known differentiation rules as described in Giering

and Kaminski (1998). It relies in particular on the definition

of active and passive variables. The former depends on the

control variables (variables one differentiates around), while

the latter are independent of the control (typically model or

grid parameters). Active variables have tangent and adjoint

counterparts while passive variables do not.

In the current version (3.4.1), only the general circulation

component of NEMO is supported by NEMOTAM and a few

key components are still missing, namely the variable vol-

ume, open boundary conditions and the grid nesting capa-

bilities. There is no fundamental reason for not supporting

these options (support for open boundary conditions is actu-

ally in progress), but it was not flagged as priority. In particu-

lar the “variable volume” option would require a tremendous

amount of coding since it makes the surface grid cells size

depending on the flow (thus becoming active variables). This
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is a typical case where a semi-automatic route would be ben-

eficial.

When coding tangent and adjoint models, either automat-

ically or manually, one has to face several difficulties. The

main ones are listed in the remainder of this section and dis-

cussed in the particular case of NEMOTAM.

2.1 Non-differentiabilities: problem and solutions

In realistic models like those included in NEMO, non-

differentiable physics are quite frequent. They can be non-

differentiable in essence (e.g. step processes), due to the way

they have been programmed or the chosen numerical meth-

ods (e.g. non-oscillatory schemes). Coding-wise they can be

represented by an IF statement with a condition on an active

variable (or a max, abs, etc. statement but it is equivalent).

In order to manage these non-differentiable parts, several op-

tions are available.

– Regularisation: either mathematical regularisation

(thanks to the introduction of a differentiable connec-

tion) or a physical regularisation whenever it is possible

(by rewriting the processes in a differentiable manner).

– Approximation: the direct model physics is approx-

imated in TAM in order to transform the non-

differentiable part. One should obviously be careful that

the approximation is not too strong.

– Non-linear branching: the non-differentiable part is kept

in TAM, but the same branching (same side of the IF)

as in the direct model is used (i.e. one left differenti-

ates and one right differentiates separately). This is in

general the preferred choice, but in some cases it can

lead to pathological behaviour and should be done very

carefully.

The choice of treatment heavily relies on the type of the

non-differentiability, and it is more a matter of educated

choice. Indeed it requires important knowledge of both the

direct model and differentiation techniques. A typical exam-

ple of this in NEMO is the vertical mixing schemes included

in OPA. The current version is strongly non-differentiable.

In NEMOTAM differentiation is achieved by first simplify-

ing the physics: some active variables are computed by the

direct model and treated as a passive variable in the TAM.

Adopting this strategy has the advantage of keeping the full

physics in the non-linear model, but it is at the expense of an

approximation in the TAM. However, most of the physical

process it models being quite regular, it may be possible to

rewrite the direct version to make it differentiable1.

Another important source of non-differentiability is the

non-oscillatory part of one of the most popular tracer advec-

tion schemes in NEMO. This kind of scheme is highly non-

1This was the strategy adopted in ROMS for the vertical mixing

scheme.

differentiable, and classical non-linear branching (as an au-

tomatic differentiation tool would do) can lead to a very un-

stable TAM. Following Thuburn (2001) two viable approx-

imations are at hand: either one differentiates at continuous

level and then applies the same non-oscillatory discretisation

scheme as for the direct model, or the non-oscillatory cor-

recting term is removed altogether in the tangent and adjoint

schemes. Both ways present some approximations: the for-

mer is generally a better approximation for the tangent model

in the long run, but it introduces some non-linearities and de-

grades the exactness of the adjoint model with respect to the

tangent model. For this reason, in NEMOTAM the second

solution has been adopted.

2.2 Checkpointing

One of the issues one has to tackle when dealing with TAM

is the storage and/or re-computation of the non-linear trajec-

tory that is required for the differentiation of the non-linear

terms. This is particularly important for the adjoint model,

which needs the trajectory in reverse order as it is produced

by the non-linear model. A common practice is the so-called

checkpointing where snapshots of the trajectory (the check-

points) are stored and intermediate variables are re-computed

between checkpoints. A similar strategy is used in NEMO-

TAM: a subset of direct variables are stored on disk at the end

of every time step, and only required intermediate variables

are recomputed. The number of non-linearities in NEMO be-

ing relatively small, the need for storage and re-computation

is limited. However, for long integrations the amount of re-

quired storage may become too severe; in that case a possible

approximation is to subsample the output of the trajectory

(say one per day), and NEMOTAM will interpolate linearly

between checkpoints. Additionally, it can be stored in single

precision. The validity of these approximations is discussed

in Sect. 3. Automatic differentiation tools generally allow for

the use of more efficient multi-level checkpointing, but it is

not possible here due to the fact that NEMO and NEMOTAM

are not run together.

2.3 Numerical issues

The numerical characteristics of the direct model are not al-

ways conserved in the adjoint model. In particular the most

common difficulty is related to the convergence speed of an

iterative algorithm that may be different for the direct and its

tangent/adjoint counterparts.

In that case, a specific solution should be provided; it can

go as far as replacing the problematic scheme by a more

TAM-friendly one. Once again, in OPATAM this kind of

problem arose, and one had to replace the conjugate gradi-

ent solver used for the computation of the surface pressure

gradient (while self-adjoint, in theory) by a red-black succes-

sive over-relaxation solver. However, this scheme being on
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the verge of depreciation in NEMO, NEMOTAM will soon

adopt the time-splitting-based direct solver.

Stability is not the only numerical issue: the TAMs are, in

essence, more expensive numerically than the direct model

because of the additional computations they require. More-

over, and it is especially true for the adjoint model, direct

code optimisations may not be so optimal for the TAM.

Therefore it is important to specifically optimise the TAM

code, and this can only be done through a careful perfor-

mance analysis. As of today, such an optimisation may not

be achieved automatically. The tendency toward application

at high and very high resolution makes the computing cost

aspect a crucial issue. NEMOTAM adopted the same domain

decomposition strategy as for NEMO and is therefore fully

parallel, and some specific targeted optimisations have been

performed. Additionally some irrelevant (as far as TAMs are

concerned) on-line diagnostics have been removed. Thanks

to all these efforts the additional computing burden has been

contained to around twice the non-linear integration cost

(more or less, depending on the application).

3 Validation

Due to the numerous caveats mentioned in Sect. 2, valida-

tion of TAM is a crucial aspect of the model development.

Fortunately there are several numerical tests that can be per-

formed to ensure this validity. Moreover, these tests can be

applied both to the whole model and to individual modules

separately.

In NEMOTAM, modules include both the tangent and ad-

joint parts, as well as the validation interface, for numerical

verification of the TAM source codes. The adjoint test would

always be present, while the tangent test could be optional

and reserved for specific and problematic routines.

In the following M(x) stands for the full non-

linear NEMO model with initial state vector x, L(x)≡

(∂M/∂x)|x=x its tangent linear model (possibly simplified),

and L∗(x) the adjoint of L(x).

3.1 Adjoint validation

The adjoint part is actually relatively easy to check. Indeed,

by definition of the adjoint one obtains

(L(x)δx,δy)=
〈
δx,L∗(x)δy

〉
, (1)

where 〈., .〉 and (., .) denote the appropriate dot product.

Equation (1) being exact, the relative error between the two

computed scalar products must be close to zero barring

rounding errors. In NEMOTAM, the actual test performed

is

(L(x)δx)∗Wδy = δx∗L∗(x)Wδy, (2)

where δx is a random vector, W is a diagonal matrix of scale

factors and δy = L(x)δx. This test only ensures that the ad-

joint is indeed the adjoint of the tangent linear, which in turn

has to be validated.

3.2 Tangent validation

Validation of tangent modules is more tricky since there

are generally no affordable exact tests available. A classical

method of testing a numerical tangent linear model L is to

compare the evolution of a perturbation by L with the differ-

ence of two evolutions, with and without the perturbation, by

the full non-linear model M.

Considering a fixed small perturbation vector δx0, and γ

a scale parameter, the Taylor expansion of M reads

M(x0+γ δx0, t)=M(x0, t)+γ L(x, t) δx0+O(γ
2). (3)

IfN (γ δx0, t) denotes the non-linear evolution of a perturba-

tion,

N (γ δx0, t)=M(x0+ γ δx0, t)−M(x0, t). (4)

The linearisation error E(γ δx0, t) is defined by

E(γ δx0, t) = N (γ δx0, t)− γL(x, t)δx0. (5)

From Eq. (3), E(γ δx0, t) behaves like O(γ 2).

The first-order accuracy index εγ is given by

εγ =
‖N (γ δx0, t)‖

‖L(x, t)γ δx0‖
. (6)

εγ tends to 1 as γ tends to 0, validating L(x, t). Moreover

when γ is small enough, N enters a linear regime and εγ
converges toward 1 with a rate γ .

Table 1 shows an example of such tests on a single rou-

tine. It illustrates nicely the expected behaviour of εγ , which

gains one digit in precision when γ is divided by 10. This

diagnostic gives information of both first order (tends to 1)

and second order (at rate γ ).

3.3 Estimation of the approximation error

As mentioned above, when differentiating realistic models,

approximations have to be made. To estimate the effect of

these approximations on the numerical tangent linear model

L, one must first estimate the truncated part of the Taylor

expansion of Eq. (3). In order to do this, following Lawless

et al. (2003), one can write the Taylor expansion of E(δx, t)
whose individual components l follow

El(δx0, t)=
1

2
∂2Mlδx

2
0+

1

6
∂3Mlδx

3
0+ . . . (7)

On the other hand, from two non-linear perturbations,

N (δx0, t) = M(x0+ δx0, t)−M(x0)

N (γ δx0, t) = M(x0+ γ δx0, t)−M(x0)
(8)
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Table 1. Tangent validity tests for the bn2 routine (computation of

the Brunt–Väisälä frequency), values of the first-order accuracy in-

dex εγ for several values of the perturbation amplitude γ .

Routine (L) γ εγ

bn2_tan 1× 100 0.999961862090

bn2_tan 1× 10−1 0.999995878199

bn2_tan 1× 10−2 0.999999584740

bn2_tan 1× 10−3 0.999999958442

bn2_tan 1× 10−4 0.999999995846

one can compute

E(γ δx0, t) =
N (γ δx0, t)− γN (δx0, t)

γ 2− γ
, (9)

whose Taylor expansion reads (for each individual compo-

nent l)

El(γ δx0, t)=
1

2
∂2Mlδx

2
0+

1+ γ

6
∂3Mlδx

3
0+O(γ

4). (10)

For small values of γ and δx0, one can compare E and E .

That way one builds up an estimator of the numerical tangent

linear model error:

Ê = 100

(
1−
‖E‖

‖E‖

)
. (11)

Moreover, in NEMO, the vast majority of the non-linearities

are quadratic ones, meaning the third order and above deriva-

tives vanish from the Taylor expansion and one gets E = E .

This diagnostic is very valuable when comparing differ-

ent simplifications made to the tangent linear model. Table 2

shows Ê for two configurations of NEMO: an academic test

case that is fully differentiable (SEABASS; see Appendix A)

and 2◦-resolution global realistic configuration (ORCA2).

This allows us to measure the effect of approximations men-

tioned in Sects. 2.2 and 2.1

4 Application examples

As stated by Errico (1997): “the principal application of ad-

joint models is sensitivity analysis, and all its other applica-

tions may be considered as derived from it”. Performing sen-

sitivity analysis means evaluating how variations on the input

of the system will affect the output. This can be of use for un-

derstanding the behaviour of the system (sensitivity analysis,

propagation of uncertainty), for optimising it (through data

assimilation for instance) and for performing stability analy-

sis. This section presents an example of these three kinds of

applications.

Table 2. Approximation error in the tangent linear model for differ-

ent configurations over 10 days.

Configurations Ê

SEABASS no simplification negligible

SEABASS interpolated checkpoint (1 per day) negligible

SEABASS simplified TVD 3 %

ORCA2 simplified vertical mixing 1 %

ORCA2 idem+TVD+ interp. checkpoint (1 per day) 4 %

4.1 Sensitivity analysis and data assimilation

In the variational context, sensitivity analysis is the computa-

tion of the gradient of so-called response (or cost or objective

or criterion) functions with respect to given control vectors.

In other words, given the model’s state x = (x1, . . .,xn)
T
∈

X ⊂ Rn and a set of control parameters α = (α1, . . .,αp)
T
∈

P ⊂ Rp, one is interested in computing gradients with re-

spect to α of a given response function:

J :P→ R

α 7−→ J (α)=

T∫
0

‖φ(x,α, t)‖2dt, (12)

where φ is a (possibly non-linear) function with values in

Rm. We considered here the mono-criterion case (J with val-

ues in R), but the following can easily be extended to multi-

criteria problems.

The scope of local sensitivity analysis is to compute ex-

actly and efficiently the sensitivities of the system’s response

to variations in the system’s parameters, around their nomi-

nal values.

This is translated by finding

Sα =∇αJ (α)=

(
∂J

∂α1

(α), . . .,
∂J

∂αp
(α)

)T
, (13)

where Sα is the local sensitivity vector of J to variations in

α. It is a local sensitivity because it depends on the current

estimate of α (and of x0).

Rewriting Eq. (12) as J (α)= 〈ϕ(α),ϕ(α)〉, where 〈., .〉

defines a dot product on Rm. The Gâteaux derivative of J

in any direction δα reads

dJ (α)[δα] =

〈
ϕ(α),

∂ϕ

∂α
qδα〉= 〈[∂ϕ

∂α

]∗ qϕ(α),δα〉
≡ 〈∇J,δα〉 . (14)

Hence
[
∂ϕ
∂α

]∗
, the adjoint of ϕ, allows for the exact computa-

tion of the p components of ∇J at once.

One can find an example of application of such methods

with NEMOTAM on the Mercator Ocean’s GLORYS 1/4◦

global ocean reanalysis in Vidard et al. (2011). The initial

www.geosci-model-dev.net/8/1245/2015/ Geosci. Model Dev., 8, 1245–1257, 2015
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objective was to try to estimate the influences of geographi-

cal areas to reduce the forecast error using an adjoint method

to compute the sensitivities (while the GLORYS assimilation

system is based on optimal interpolation). We conducted a

preliminary study by considering the misfit to observations

as a proxy of the forecast error and sought to determine the

sensitivity of this difference to changes in the initial condi-

tion and/or to forcing. That should give an indication about

the important phenomena to consider to improve this system.

The most easily interpreted case in this study is to con-

sider a sensitivity criterion coming from the difference in sea

surface temperature (SST) maps at the final instant of the as-

similation cycle because of its dense coverage in space. This

can be translated into computing the gradient:

J (x0,q)=
1

2

NSST∑
n=1

‖HSST(xn)−SSTobs
‖

2
R−1 (15)

with a control vector made of x0 = (u0,v0,T0,S0,η0)
T the

initial state vector (current velocities component, tempera-

ture, salinity and sea level) and of q = (qsr,qns,emp)T (ra-

diative fluxes, total heat fluxes, freshwater fluxes). One can

see an example of sensitivity to initial temperature (surface

and 100 m) as shown in the two bottom panels of Fig. 1. High

sensitivity will give a signal similar to the gap in observations

(top left), while low sensitivity will show a white area. In this

example it is clear that the SST misfit is highly sensitive to

changes in surface temperature where the initial mixed layer

depth (top right) is low and insensitive elsewhere. The op-

posite conclusion can be drawn from the sensitivity to the

initial temperature at 100 m. This is obviously not a surprise,

and it corresponds more to the purpose of verification of the

model rather than the original goal of assimilation system im-

provement. However it highlights the importance of having a

good estimate of the vertical mixing and echoes the fact they

this vertical mixing is often perturbed by data assimilation.

Other components of the gradient show the important role of

atmospheric forcing (which again we could have guessed),

and ways to improve the system also appear to point to that

direction. With the objective of improving the data assimila-

tion system, this approach is obviously not completely sat-

isfactory because, strictly speaking, the assimilation system

should be included in the optimality system. In theory, this

assimilation system being linear and made of matrix multi-

plication, deriving its adjoint should be easy. In practice it

is a different story – manipulating an operational system is

never easy.

The sensitivities are of interest by themselves, but they

can also be used for optimising the system. In particular this

way of computing gradients is extensively used in variational

data assimilation for the minimisation of similar cost func-

tion (4D-Var). For ocean application, historically the pre-

ferred choice of data assimilation technique has been (and

still is for many cases) that of optimal interpolation or 3D-

Var type schemes. These algorithms make the assumptions

that the system state is stationary over a given time window

(typically 1 to 10 days), which can be a crude approximation.

4D-Var does not make this assumption and uses the adjoint

model to compute the gradient of a cost function of the form

J (x0)=
1

2
‖x0− xb

‖
2
B−1

+
1

2

T∑
t=1

‖Ht (M(x0, t))− yobs
t ‖

2
R−1 , (16)

where ‖z‖2C = 〈z,Cz〉. B is the background and R the obser-

vation error covariance matrix, xb its the background state,

and yobs are the observations. The gradient ∇J of this cost

function can be computed using relation (14):

∇J = B−1(x0− xb)

+

T∑
t=1

L∗H∗t R
−1(Ht (M(x0, t))− yobs

t ). (17)

To illustrate the application of 3D-Var and 4D-Var type

schemes, one can perform single observation experiments,

where only one observation at the end of the assimilation

window is assimilated. In that case, after a bit of algebra and

assumingM(x0+δx,T )=M(x0,T )+L.δx one can write

the optimal state xa that minimises J as

xa
= xb

+BL∗H∗
(
R+HLBL∗H∗

)−1
(HT (M(x0,T ))− yobs

T ).

For a single observation experiment, it is easy to see that(
R+HLBL∗H∗

)−1
(HT (M(x0,T ))− yobs

T ) is a scalar, and

when multiplied by H∗ it becomes a vector in the state space,

with only one non-zero value (assuming the observation is at

a grid point). In 3D-Var formulation, L∗ is approximated by

the identity operator, so the correction to the initial condition

outside the observed grid point is solely driven by the pre-

scribed background error statistics in B, while in 4D-Var the

model dynamics are accounted for through the adjoint model

L∗.

An example of such differences is given in Fig. 2 where a

single synthetic sea surface height observation, close to the

middle of the regional model, at the end of the data assim-

ilation time window, is assimilated using both 3D-Var and

incremental 4D-Var algorithms from the NEMOVAR system

with NEMO’s SEABASS configuration (see Appendix A).

The observation misfit value is 0.5 m.

The 3D-Var increment (top figure) shows a perfect Gaus-

sian shape, centred around the observation location, with

a maximum amplitude close to the observation value. This

Gaussian shape is exactly what is prescribed in the back-

ground error covariance matrix B, and the computed incre-

ment is independent of the length of the assimilation win-

dow. On the other hand, 4D-Var increment is sensitive to

the assimilation window length. Two examples are given: the
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J(x0) =
1

2
kx0�xbk2

B�1 +
1

2

TX

t=1

kHt(M(x0,t))�yobs
t k2

R�1 (16)

where kzk2
C = hz,Czi and B (resp R) is the background

(resp observation) error covariance matrix. xb its the back-

longer valid and the shape of the optimal correction is com-
pletely different.

4.2 Singular vectors

Another application of tangent and adjoint models is the sta-
bility analysis, that is the study of perturbations on the sys-

Figure 1. (top) Misfit between forecast and observed SST (left) and mixed layer depth (right). (bottom) Sensitivity to 1-week lead time SST

error with respect to variations in initial surface (left) and 100 m (right) temperature (courtesy of E. Rémy, Mercator Ocean).

first with a 5-day window (bottom left) and the second with

a 30-day window. In the first case, the 3D-Var approxima-

tion is acceptable, so both 3D-Var and 4D-Var are similar,

even though the latter is slightly deformed and displaced to

account for the short-term dynamics. For the longer assimi-

lation window (bottom right) however, the effect of the dy-

namics is more complex; in particular the non-linearities are

more developed. As a consequence the 3D-Var approxima-

tion is no longer valid, and the shape of the optimal correc-

tion is completely different.

This obviously comes at a cost, since 3D-Var would only

require one direct model integration and 4D-Var would addi-

tionally require one tangent and adjoint integration per min-

imisation iteration. In a single observation experiment as pre-

sented above, the minimisation converges in only one itera-

tion, limiting the cost of 4D-Var to about 4 times that of 3D-

Var. In a more realistic configuration one performs about 30

to 50 iterations, leading 4D-Var to be up to 200 times more

cpu-expensive than 3D-Var. This is why, in many implemen-

tations, the minimisation is performed at a lower resolution

than the forecast.

4.2 Singular vectors

Another application of tangent and adjoint models is stability

analysis, which is the study of perturbations on the system.

Particular tools for such analysis are the so-called singular

vectors.

We classically define the growth rate of a given perturba-

tion δx0 by

ρ (δx0)=
‖M(x0+ δx0,T )−M(x0,T )‖1

‖δx0‖2
, (18)

where ‖.‖1 = 〈.,W1.〉 and ‖.‖2 = 〈.,W2.〉 are given norms

and T is the final time of the considered window.

One can then define the optimal perturbation δx1
0 so that

ρ
(
δx1

0

)
=max

δx0

ρ (δx0) and then deduce a family of maxi-

mum growth vectors

ρ
(
δxi0

)
= max
δx0⊥Span

(
δx1

0,...,δx
i−1
0

) ρ (δx0) , i ≥ 2. (19)

By restricting the study to the linear part of the pertur-

bation behaviour, the growth rate becomes (denoting L=

L(x,T ) for clarity)

ρ2 (δx0)=
‖Lδx0‖

2
1

‖δx0‖
2
2

=
〈Lδx0,W1Lδx0〉

〈δx0,W2δx0〉

=
〈δx0,L

∗W1Lδx0〉

〈δx0,W2δx0〉
. (20)

Maximising the above equation is equivalent to solving the

following generalised eigenvalue problem:

L∗W1Lg+i = µiW2g
+

i , (21)
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Figure 2. Assimilation increments in the SEABASS configuration corresponding to one sea surface height observation and a misfit of 0.5 m.

Coming from NEMOVAR 3D-Var (top) and 4D-Var (bottom) formulation. Two different assimilation window lengths are presented for the

4D-Var: 5 days (left) and 30 days (right).

which is equivalent, using the change of variable g+i =

W
−1/2

2 f+i , to

W
−1/2

2 L∗W1LW
−1/2

2 f+i = µif
+

i . (22)

W
−1/2

2 L∗W1LW
−1/2

2 being a symmetric positive definite

matrix, its eigenvalues are positive real and its eigenvectors

are (or can be chosen) orthonormal. The strongest growth

vectors are the eigenvectors of W
−1/2

2 L∗W1LW
−1/2

2 corre-

sponding to the greater eigenvalues. They are called forward

singular vectors.

The backward singular vectors, denoted f−i , are denoted

by W
1/2

1 LW
−1/2

2 f+i =
√
µi f

−

i . The eigenvalue correspond-

ing to f−i is µi as well. Forward singular vectors represent

the directions of perturbation that will grow fastest, while

backward singular vector represent the directions of pertur-

bation that have grown the most.
√
µi is the amplification

factor associated with the ith singular vector.

The computation of the f+i and f−i generally requires nu-

merous matrix–vector multiplications, i.e. direct integrations

of the model and backward adjoint integrations. The result of

these calculations depends on the norm used, the time win-

dow and the initial state if the model is non-linear. Examples

of such vectors for a 1/12th of degree SEABASS configura-

tion are shown in Fig. 3. The left panel shows the sea surface

height component of the first forward singular vector that ex-

hibits a strong signal over the dominant jet of this config-

uration, showing that the optimal perturbation is located in

the most active region (as it is shown in Fig. A1). The right

panel shows the corresponding backward singular vector, i.e.

the result of the evolution of the optimal perturbation through

the linear part of the dynamics. The complex structure of the

original perturbation has been transformed into several in-

dividual vortices. This is similar to what Durbiano (2001)

presented for a shallow-water model.

These singular vectors were computed using an energy

norm to define ‖.‖1,2 and the parpack (Lehoucq et al., 1998)

external library to perform the singular value decomposition.

The computational cost required for obtaining singular vec-

tors can vary from one situation to another since it depends

on the number of iterations the Arnoldi algorithm used in

parpack takes to converge, which itself depends on the eigen-

spectrum. For instance it took from 27 to 49 iterations for

computing the 10 leading singular vectors of the different

cases discussed in Fig. 4, each iterations requiring the inte-

gration of both tangent and adjoint models.

These vectors, thanks to the information they contain

about the system behaviour, have many applications. Among

them, one can cite ensemble forecast, sensitivity studies

(Rivière et al., 2009, for a recent application), the order re-

duction in data assimilation (Blayo et al., 2003), improving

the monitoring network (Qin and Mu, 2011) or allowing one

to better select targeted observations (Mu et al., 2009).

A by-product of the computation of singular vectors is the

amplification factor
√
µi that represents the growth of the

corresponding singular vector at T the end of the time win-

dow. Figure 4 shows the impact of the length of this time win-

dow (left) and of the model resolution (right). The impact of

the latter is obvious: the higher the resolution the more active

the model – hence the faster perturbations amplify. Regard-
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Figure 3. Sea surface height component of the leading forward (left) and backward (right) singular vectors for a SEABASS configuration at

1/12◦ and a 10-day window.
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Figure 4. Amplification factor for the 10 first singular vectors of the 1/12◦ SEABASS configuration for several time windows (left) and

comparison of the amplification factors of the first singular vector for the 1/12◦ and the 1/4◦ SEABASS configurations (right).

ing the time window length it is less obvious. For a short

period of time as presented here the link is the same. Per-

turbations get more time to grow; therefore, the amplifica-

tion factor increases. With a longer time window (few years

or decades) optimal perturbations are such that amplification

factors will start to decrease. This dipping point is important

in predictability studies (see Zanna et al., 2011, for more de-

tails on this topic).

5 Conclusions

The tangent and adjoint models of NEMO (NEMOTAM) are

now available (with respect to the 3.4.1 version of NEMO

at the time of writing this paper). It is part of the NEMO-

ASSIM tools (Bouttier et al., 2012), whose aim is to ease the

interface between NEMO code and most data assimilation

algorithms. In the few preceding pages, these models, the

technical choices made for their developments and their val-

idation were discussed. Additionally some applications were

presented as an illustration of potential use.

When developing a TAM, two main difficulties have to be

addressed: the handling of the non-linearities and of the non-

differentiable parts. Indeed non-linear equations require the

storage and/or recomputation of the non-linear trajectory to

differentiate around. In NEMOTAM this is done through the

so-called checkpointing strategy, consisting in saving part of

the non-linear trajectory at a given frequency (checkpoints),

recomputing the missing part and, if needed, interpolating

it linearly between checkpoints. On the other hand the non-

differentiability issues are dealt with using three different ap-

proaches, depending on the discontinuity nature: numerical

or physical regularisation, numerical or physical approxima-

tion and non-linear branching.

All these choices have to be validated along with the cod-

ing itself. To that end a significant effort has been invested

in NEMOTAM. First, adjoint tests are systematically imple-

mented for each adjoint routine and give an exact indica-

tion of the validity of the adjoint code. For the tangent lin-

ear model, there is no exact test which can strictly validate

the development. However, comparing the propagation of a

small perturbation by the tangent-linear model and the direct

model gives an idea of the validity of the tangent-linear hy-

pothesis. Finally, an estimator of the errors due to the approx-

imations of NEMO non-differentiable parts is also provided

for the corresponding routines.

The range of applications using NEMOTAM is wide. To il-

lustrate that, three example applications were presented. First

a local sensitivity analysis with a realistic NEMO configura-

tion was carried out. Then, a very simple data assimilation

experiment, using a single observation is also performed, il-

lustrating the impact of the use of an adjoint model. And fi-

nally some singular vectors were computed using NEMO-

TAM.
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The scope of the current NEMOTAM implementation

leaves room for different extensions (e.g. taking in account

other NEMO modules, such as the sea ice model, nested

grids). In order to handle properly the multi-processor as-

pects and optimise computing cost, the current NEMOTAM

is hand-coded. Such an approach can limit the range of possi-

ble input quantities to be considered when computing sensi-

tivities. As it is, it can compute – without any change of code

– sensitivities to perturbations to the initial condition and/or

surface boundary conditions, and with very limited modifi-

cations, sensitivities to perturbation of physical parameters

(such as bottom friction for instance). However for parame-

ters that are used throughout the model code, such as grid-

related parameters, it would require a significant amount of

coding. This is why, in order to provide more flexibility in

the choice of variable to differentiate around and to ease the

process of updating the NEMOTAM code with new features

and following the evolution of the direct code, a subtle trade-

off between automatic differentiation and manual interven-

tion could be very beneficial.
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Appendix A: SEABASS configuration

The SEABASS reference configuration for NEMO is men-

tioned several times in this paper. This configuration is an

academic basin presenting a double-gyre circulation. The

horizontal domain extends from 24 to 44◦ N and over 30◦

in longitude. For a 1/4◦ horizontal resolution, the grid con-

tains only 121 points in longitude and 81 points in latitude.

The time step is 900 s. The ocean is sliced into 11 verticals

levels, from surface to 4000 m, described with a z coordinate.

The domain is closed and has a flat bottom. Lateral bound-

aries conditions are frictionless and bottom boundary condi-

tion exerts a linear friction. The circulation is only forced by

a zonal wind. Lateral dissipation is performed on dynamics

and tracers with a biharmonic diffusion operator. The salin-

ity is constant over the whole domain, and the initial strati-

fication is produced using an analytical temperature profile.

Details can be found in Cosme et al. (2010), for example.

Even if SEABASS is an academic configuration, it ex-

hibits a turbulence level statistically meaningful regarding

the eddy activity and the non-linearity amplitude of the actual

Gulf Stream system. This SEABASS characteristic is inter-

esting in a data assimilation context, as the oceanic turbu-

lence is one of the major current stakes for data assimilation

methods in oceanography.

Figure A1. Surface eddy kinetic energy averaged over 1 year (in

m2 s−2), for the SEABASS configuration at a 1/12◦ horizontal res-

olution.
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Code availability

NEMOTAM was released with NEMO 3.4 STABLE version

for the first time as an official NEMO component. To ex-

tract this version of NEMO, users need to create an account

on the NEMO website (www.nemo-ocean.eu/user/register).

After that, source code can be utilised by using the rel-

evant SVN command. Instructions to compile and to run

NEMOTAM can be found at this URL (visible once logged

in): http://www.nemo-ocean.eu/Using-NEMO/User-Guides/

Basics/Tangent-and-Adjoint-quick-start-guide.

Acknowledgements. The authors would like to thanks the

NEMOVAR group in general and A. Weaver and K. Mogensen

in particular for their participation in the early phase of the

development of NEMOTAM. Additional precious help came from

R. Benshila, who guided us through the meander of the NEMO

system. This work was also financially supported by CNES and

the French National Research Agency (ANR project VODA:

ANR-08-COSI-016).

Edited by: D. Ham

References

Blayo, E., Durbiano, S., Vidard, A., and Le Dimet, F.-X.: Reduced

order strategies for variational data assimilation in oceanic mod-

els, in: Data Assimilation for Geophysical Flows, edited by:

Sportisse, B. and Le Dimet, F.-X., 18 pp., Springer-Verlag, 2003.

Bouttier, P.-A., Blayo, E., Brankart, J.-M., Brasseur, P., Cosme, E.,

Verron, J., and Vidard, A.: Toward a data assimilation system for

NEMO, Mercator Ocean Quarterly Newsletter, 46, 24–30, 2012.

Daget, N., Weaver, A. T., and Balmaseda, M. A.: Ensemble estima-

tion of background-error variances in a three-dimensional varia-

tional data assimilation system for the global ocean, Q. J. Roy.

Meteor. Soc., 135, 1071–1094, 2009.

Deltel, C.: Estimation de la circulation dans l’océan Atlantique Sud

par assimilation variationnelle de données in situ, Impact du con-

trôle optimal des forçages et de l’hydrologie aux frontières ou-

vertes, 185 pp., PhD thesis, Univ. de Bretagne Occidentale, 2002.

Durbiano, S.: Vecteurs caractéristiques de modèles océaniques pour

la réduction d’ordre en assimilation de données, PhD thesis, Uni-

versité Joseph Fourier, 2001.

Errico, R. M.: What Is an Adjoint Model?, B. Am. Meteorol. Soc.,

78, 2577–2591, 1997.

Forget, G., Ferron, B., and Mercier, H.: Combining Argo profiles

with a general circulation model in the North Atlantic. Part 1:

Estimation of hydrographic and circulation anomalies from syn-

thetic profiles, over a year, Ocean Model., 20, 1–16, 2008.

Giering, R. and Kaminski, T.: Recipes for adjoint code construction,

ACM Trans. Math. Softw., 24, 437–474, 1998.

Hascoët, L. and Pascual, V.: TAPENADE 2.1 user’s guide, Techni-

cal Report 0300, INRIA, 2004.

Lawless, A., Nichols, N., and Ballard, S.: A comparison of two

methods for developing the linearization of a shallow-water

model, Q. J. Roy. Meteor. Soc., 129, 1237–1254, 2003.

Lehoucq, R. B., Sorensen, D. C., and Yang, C.: ARPACK Users’

Guide: Solution of Large-scale Eigenvalue Problems with Im-

plicitly Restarted Arnoldi Methods, SIAM Philadelphia, ISBN

0898714079, 142 pp., 1998.

Madec, G.: NEMO ocean engine, Note du Pôle de modélisa-

tion, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN

No 1288-1619, 2008.

Madec, G., Delecluse, P., Imbard, M., and Lévy, C.: OPA 8.1 ocean

general circulation model reference manual, IPSL, Note No. 11

du Pôle de Modélisation (LODYC), 1998.

Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., and

Lee, T.: Construction of the adjoint MIT ocean general circula-

tion model and application to Atlantic heat transport sensitivity,

J. Geophys. Res., 104, 29529–29547, 1999.

Mogensen, K. S., Balmaseda, M. A., Anthony, W., Martin, M., and

Vidard, A.: NEMOVAR: A variational data assimilation system

for the NEMO ocean model, ECMWF newsletter, 120, 17–21,

2009.

Moore, A., Vialard, J., Weaver, A., Anderson, D., Kleeman, R.,

and Johnson, J.: The Role of Air-Sea Interaction in Controlling

the Optimal Perturbations of Low-Frequency Tropical Coupled

Ocean-Atmosphere Modes, J. Climate, 16, 951–968, 2003.

Moore, A., Arango, H., Di Lorenzo, E., Cornuelle, B., Miller, A.,

and Neilson, D.: A comprehensive ocean prediction and analysis

system based on the tangent linear and adjoint of a regional ocean

model, Ocean Model., 7, 227–258, 2004.

Mu, M., Zhou, F., and Wang, H.: A Method for Identifying the

Sensitive Areas in Targeted Observations for Tropical Cyclone

Prediction: Conditional Nonlinear Optimal Perturbation, Mon.

Weather Rev., 137, 1623–1639, 2009.

Qin, X. and Mu, M.: Influence of conditional nonlinear optimal per-

turbations sensitivity on typhoon track forecasts, Q. J. Roy. Me-

teor. Soc., 138, 185–197, 2011.

Rémy, E.: Assimilation variationnelle de données tomographiques

simulées dans des modèles de circulation océanique, PhD thesis,

Univ. Paris 6, 1999.

Rivière, O., Lapeyre, G., and Talagrand, O.: A novel technique for

nonlinear sensitivity analysis: application to moist predictability,

Q. J. Roy. Meteor. Soc., 135, 1520–1537, 2009.

Sévellec, F., Huck, T., BenJelloul, M., Grima, N., Vialard, J., and

Weaver, A.: Optimal surface salinity perturbations of the merid-

ional overturning and heat transport in a global ocean general

circulation model, J. Phys. Oceanogr., 38, 2739–2754, 2008.

Sévellec, F., Huck, T., BenJelloul, M., and Vialard, J.: Non-normal

multidecadal response of the thermohaline circulation induced

by optimal surface salinity perturbations, J. Phys. Oceanogr., 39,

852–872, 2009.

Tber, M. H., Hascoet, L., Vidard, A., and Dauvergne, B.: Building

the Tangent and Adjoint codes of the Ocean General Circula-

tion Model OPA with the Automatic Differentiation tool TAPE-

NADE, Research Report RR-6372, INRIA, 2007.

Thuburn, J.: Adjoints of Nonoscillatory Advection Schemes, J.

Comput. Phys., 171, 616–631, 2001.

Vidard, A.: Vers une prise en compte de l’erreur modèle en assimila-

tion de données 4D-variationnelle, PhD thesis, Université Joseph

Fourier, 2001.

Vidard, A., Rémy, E., and Greiner, E.: Sensitivity analysis through

adjoint method: application to the GLORYS reanalysis, Contrat

no. 08/D43, Mercator Océan, 2011.

Geosci. Model Dev., 8, 1245–1257, 2015 www.geosci-model-dev.net/8/1245/2015/

www.nemo-ocean.eu/user/register
http://www.nemo-ocean.eu/Using-NEMO/User-Guides/Basics/Tangent-and-Adjoint-quick-start-guide
http://www.nemo-ocean.eu/Using-NEMO/User-Guides/Basics/Tangent-and-Adjoint-quick-start-guide


A. Vidard et al.: NEMOTAM 1257

Vossepoel, F. C., Weaver, A., Vialard, J., and Delecluse, P.: Adjust-

ment of near-equatorial wind stress with 4D-Var data assimila-

tion in a model of the Pacific Ocean, Mon. Weather Rev., 132,

2070–2083, 2003.

Weaver, A. T., Vialard, J., and Anderson, D. L. T.: Three- and Four-

Dimensional Variational Assimilation with a General Circulation

Model of the Tropical Pacific Ocean. Part I: Formulation, Internal

Diagnostics, and Consistency Checks, Mon. Weather Rev., 131,

1360–1378, 2003.

Weaver, A. T., Deltel, C., Machu, E., and Ricci, S.: A multivari-

ate balance operator for variational ocean data assimilation, Q. J.

Roy. Meteor. Soc., 131, 3605–3625, 2005.

Zanna, L., Heimbach, P., Moore, A. M., and Tziperman, E.: Upper-

ocean singular vectors of the North Atlantic climate with impli-

cations for linear predictability and variability, Q. J. Roy. Meteor.

Soc., 138, 500–513, 2011.

www.geosci-model-dev.net/8/1245/2015/ Geosci. Model Dev., 8, 1245–1257, 2015


	Abstract
	Introduction and history
	Methodology and choices for NEMOTAM
	Non-differentiabilities: problem and solutions
	Checkpointing
	Numerical issues

	Validation 
	Adjoint validation
	Tangent validation
	Estimation of the approximation error

	Application examples
	Sensitivity analysis and data assimilation
	Singular vectors

	Conclusions
	Appendix A: SEABASS configuration
	Acknowledgements
	References

