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In an ocean reanalysis, historical observations are combined with ocean and biogeochemical general circulation
models to produce a reconstruction of the oceanic properties in past decades. This is one possiblemethod to bet-
ter constrain the role of the ocean carbon cycle in the determination of the air–sea CO2 flux. In this work, we in-
vestigate how the assimilation of physical variables and subsequently the combined assimilation of physical data
and inorganic carbon variables – namely dissolved inorganic carbon (DIC) and alkalinity – affect themodelling of
the marine carbonate system and the related air–sea CO2 fluxes. The performance of the two assimilation exer-
cises are quantitatively assessed against the assimilated DIC and alkalinity data and the independent ocean sur-
face pCO2 observations from global datasets. We obtain that the assimilation of physical observations has
contrasting effects in different ocean basins when compared with the DIC and alkalinity data: it reduces the
root-mean square error against the observed pCO2 in the Atlantic and Southern oceans, while increases the
model error in the North Pacific and Indian Oceans. In both cases the corrected evaporation rates are the major
factor determining the changes in concentrations. The assimilation of inorganic carbon variables on top of the
physical data gives a generalized improvement in the model error of inorganic carbon variables, also improving
the annual mean and spatial distribution of air–sea fluxes in agreement with other published estimates. These
results indicate that data assimilation of physical and inorganic carbon data does not guarantee the improvement
of the simulated pCO2 in all the oceanic regions; nevertheless, errors in pCO2 are reduced by a factor correspond-
ing to those associated with the air–sea flux formulations.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Both the land and the ocean act as sinks capable of absorbing frac-
tions of atmospheric CO2 (Le Quéré et al., 2015). Since the terrestrial
sink turns out to be one of themost uncertain terms, it is usually derived
as a difference between the atmospheric growth rate and ocean uptake
(Canadell et al., 2007; Le Quéré et al., 2012). The reconstruction of the
air–sea CO2 flux is thus crucial in closing the global carbon budget. In
addition, an adequate estimation of current ocean–atmosphere fluxes
is required by the concern that the capability of the ocean in absorbing
atmospheric CO2 is likely to diminish in the future because of the satu-
ration in the natural sinks due to surface ocean warming and reduced
uptake efficiency (Sarmiento and Le Quéré, 1996; Matear and Hirst,
1999; Joos et al., 1999; Le Quéré et al., 2007, 2010; Ballantyne et al.,
2012).

Recent studies aimed at assessing the value of the global and region-
al air–sea CO2 flux, using inorganic carbon data from publicly available
global ocean databases, account for ocean inversion methods (Gloor
et al., 2001, 2003; Gurney et al., 2004; Patra et al., 2005; Jacobson
a 40128, Italy.
et al., 2007a, 2007b; Mikaloff Fletcher et al., 2007; Gruber et al., 2009;
Maksyutov et al., 2013), interpolation procedures (Takahashi and
Sutherland, 2007; Takahashi et al., 2009; Jones et al., 2012; Park et al.,
2010; Chen et al., 2011; Deng and Chen, 2011; Gerber and Joos, 2010),
neural networks (Lefèvre et al., 2005; Telszewski et al., 2009;
Landschützer et al., 2013), and prognostic Ocean Biogeochemical Gen-
eral Circulation Models (OBGCM) (Watson and Orr, 2003; Matsumoto
et al., 2004; Le Quéré et al., 2010).

In particular, the application of OBGCMs represents an alternative to
the ocean and atmosphere inversion methods (Wanninkhof et al.,
2013). In such a framework, a biogeochemical and physical oceanic
models are coupled to reconstruct both the physical state and the bio-
geochemical properties of the ocean. The advantage offered by OBGCMs
over statistical methods stems in the fact that the underlying models
rely on diagnostic and prognostic equations, which in turn tests our
knowledge of the main mechanisms involved. In a forward OBGCM,
ocean physical dynamics are simulatedwith discretized primitive equa-
tionswhosemajor uncertainties aremostly related to coarse spatial res-
olutions and sub-grid scale parameterizations. In particular, different
realizations of the surface forcing or the model architecture used in
the ocean dynamics have been demonstrated to give substantial differ-
ences in the resulting fields of inorganic carbon variables even when a
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rather simplified biogeochemical model is used (Doney et al., 2004;
Sitch et al., 2015). Amore complex alternative relies on the combination
of an OBGCM with an atmospheric model to realize an Earth System
model (Crueger et al., 2008; Vichi et al., 2011). Another source of uncer-
tainty is represented by the parameterization of the air–sea CO2 flux
that is usually based on empirical estimates of the exchange rate at
the interface (Wanninkhof, 1992).

One approach at constraining the air–sea CO2 fluxes consists in the
realistic simulation of the space and time evolution of surface pCO2,
which is linked to the physical and biogeochemical dynamics of the
two main carbonate system variables dissolved inorganic carbon (DIC)
and total alkalinity (ALK). However, the large number of different bio-
geochemical models used in OBGCMs is an indication that there are
few evidence-based constraints on biological processes, whose knowl-
edge is derived heuristically from laboratory experiments and in situ
measurements with necessarily limited spatial and temporal extents.

Only recently the scientific literature reported on the assimilation
of these inorganic carbon variables or of the CO2 partial pressure into
an OBGCM (Ridgwell et al., 2007; Dowd et al., 2014; Valsala and
Maksyutov, 2010; While et al., 2012; Gregg et al., 2014). Ridgwell
et al. (2007) used an ensemble Kalman filter method to assimilate alka-
linity and phosphates into the global Grid ENabled Integrated Earth oce-
anic model, coupled to a model that resolves the biogeochemistry.
Ensemble Kalman Filter was also used to estimate the parameters of
the biological processes related to carbon cycling (Dowd et al., 2014).
Valsala andMaksyutov (2010)modelled the ocean carbon cycle by cou-
pling a biogeochemical model to an offline transport model for physical
circulation, assimilating pCO2 datawith a variationalmethod, but do not
focus on the benefits of the assimilation of physical data. While et al.
(2012) modified the FOAM data assimilation system to allow for the
possibility of assimilating pCO2 data, using the NEMO ocean model
coupled to the HadOCC biogeochemical model.

At the best of our knowledge, the impact of physical data assimila-
tion alone on the simulation of the carbonate systemwas not specifical-
ly addressed in previous works and only a limited literature deals with
the effects on other biogeochemical variables. The first pioneering
paper by Anderson et al. (2000) indicated the creation of spurious
biogeochemical fluxes when physics and biology were not assimilated
together and a joint assimilation process was suggested. Berline et al.
(2007) reported some slight improvements of the assimilation of phys-
ics alone, mostly due to changes in the mixed layer depth in the North
Atlantic. The impact on the ecosystem features was however deemed
small and not necessarily positive. Following the previous work,
Ourmières et al. (2009) reported that the assimilation of physical data
has a rather weak the impact on the ecosystem and, in some situations,
it can even worsen the ecosystem response for areas where the prior
nutrient distribution is significantly incorrect. They come to the conclu-
sion that the combined assimilation of physical and nutrient data has a
positive impact on the phytoplankton patterns, by claiming the urgent
needed of more intensive in situ measurements of biogeochemical
nutrients to overcome these issues. More recently, Raghukumar et al.
(2015) used a physical–biogeochemical model of the California Current
System with an incremental 4-dimensional variational method for
physical data assimilation. They found that the method improves
correlation with observations, although artificially enhancing the
phytoplankton standing stock that leads to a large bias particularly in
regions of low mean concentration.

In this work, we investigate the benefits and drawbacks of using an
assimilation system for physical-only observations (temperature and
salinity) and the subsequent inclusion of inorganic carbon data (DIC
and ALK) to simulate the evolution of the carbonate system and the
related air-sea CO2 fluxes in a forward OBGCM.

The approach based on the assimilation of physical quantities is
worth exploring since an established and well-maintained monitoring
network for the physical state of the global ocean exists (see http://
www.argo.ucsd.edu). In view of a similar organized effort in collecting
carbonate system observations through a global ocean network, we
also aim at assessing the possible improvements emerging from the
combination of data assimilation and inorganic carbon observations.

We used the Nucleus for European Modelling of the Ocean (NEMO,
Madec, 2008) general circulation model coupled online to the Biogeo-
chemical Flux Model (BFM, Vichi et al., 2007a, 2007b). The assimilation
of the physical and biogeochemical components is performed with a
three-dimensional variational ocean data assimilation system (Storto
et al., 2011).

In this study, we run three different experiments under current cli-
mate conditions,whichdiffer by the inclusion in the assimilation system
of in-situ physical data, both physical and inorganic carbon data (DIC
and ALK), compared against a control run. Besides the evaluation of
the assimilated state variables, the overall assessment of the performed
simulations focuses on the independent comparison with observations
of the sea surface pCO2 and with literature estimates of the air–sea
CO2 fluxes.

The manuscript is organized as follows. Section 2 describes the
OBGCM, the data assimilation system, and observational data consid-
ered for the assimilation and the validation. In Section 3 we highlight
the assessment of the assimilation for both the physical and inorganic
carbon variables, and we present the results for the simulation of the
pCO2 and the air-sea CO2 flux. In Section 4we discuss the results obtain-
ed, drawing conclusions in Section 5.

2. Methods

2.1. Oceanic biogeochemical general circulation model

The OBGCM used in the present work is composed by the NEMO
general circulation model (Madec, 2008; see also http://www.nemo-
ocean.eu, version 3.4), coupled with the Louvain-La-Neuve sea-ice
model (Fichefet and Maqueda, 1997; version 2) and with the Biogeo-
chemical Flux Model (Vichi et al., 2007a, 2007b, Vichi and Masina,
2009; see http://bfm-community.eu, version 5).

Themodel is based on anORCA gridwith a horizontal grid resolution
of 2° × 2°, except in the 20°N–20°S belt where themeridional grid spac-
ing reduces to 0.5°. The grid is irregular and features three poles, two of
which are located over the land regions in the northern hemisphere and
the third over Antarctica. The number of ocean vertical levels is 30, 20 of
which are located in the top 500 m.

The net freshwater flux is corrected by means of the relaxation to-
ward the World Ocean Atlas 2009 (WOA09, http://www.nodc.noaa.
gov/) monthly climatology of sea surface salinity, with a relaxation
timescale corresponding to 300 days for a 50 m deep mixed layer. An
additional three-dimensional relaxation is applied northward of 60°N
and southward of 60°S in order to avoid high-latitude model drifts. At
each time step, the freshwater flux is adjusted according to the climato-
logical flux computed on the previous year. This adjustment directly
modifies the Sea Surface Salinity (SSS). At the same time, we do not
enforce the relaxation in the Sea Surface Temperature (SST).

The Biogeochemical Flux Model (BFM) describes the dynamics of
major biogeochemical processes occurring in global marine systems in-
cluding the carbonate system. Themodel is based on a set of differential
equations describing the fluxes ofmatter and energy between inorganic
pools and living functional groups. The BFM describes through a contin-
uum biomass representation the lower trophic levels dynamics of the
marine ecosystem. The model implements a set of biomass-based dif-
ferential equations that solve the fluxes of nutrients (carbon, nitrogen,
phosphorus, silicate and iron) among selected biological functional
groups (namely, 1 bacterial, 3 phytoplanktonic and 3 zooplanktonic
groups) representing the major components of the ocean ecosystem
(Vichi et al., 2015).

It was here included the parameterization of calcite formation
and dissolution proposed by Aumont and Bopp (2006), with the refer-
ence phytoplankton content of particulate inorganic carbon (PIC) as
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estimated by Gehlen et al. (2007). Calcite is produced by nanoflagellates
and released as a consequence of grazing by micro- and meso-
zooplankton and loss processes involving particulate matter originate
by cells death. The sinking velocity of PIC is set to a constant value of
30 m/d and changes in the calcite pool lead to a stoichiometric adjust-
ment in DIC and ALK concentrations. A scheme of the state variables
and resolved physiological and ecological processes is available on the
model web page (http://bfm-community.eu), where it is also possible
to download the code and access the full documentation. Additional de-
tails for the parameterization of the advection and diffusion schemes,
the forcing, and the river runoff used in the experiments are provided
in Table 1.

2.2. Ocean data assimilation system

The OBGCM is coupled with the global implementation of a three-
dimensional variational data assimilation system, here OceanVar
(Dobricic and Pinardi, 2008; Storto et al., 2011). The model assimilates
data over the whole oceanic region with no depth exclusion over a
fixed length time window. The data assimilation step consists in mini-
mizing a cost function J(x) with respect to the state vector x, containing
both physical and biogeochemical parameters (T, S, DIC, ALK) in the
model three-dimensional grid, of the form (Courtier et al., 1994)

J xð Þ ¼ 1
2

x−xb
� �T

B−1 x−xb
� �

þ 1
2

d−H x−xb
� �h iT

R−1 d−H x−xb
� �h i

;

ð1Þ

where xb is the background model state, B is the background-error co-
variance matrix, d is the vector of misfits, H is the observation operator
that interpolates x over d, and R is the observational error covariance
matrix. In OceanVar, the background error covariances of the model
state B are further split into a sequence of operators that account sepa-
rately for the horizontal and vertical error covariances of the assimilated
fields (Dobricic and Pinardi, 2008). The vector of misfits d is computed
through the First Guess at Appropriate time (FGAT) method, namely
observations are compared to the model equivalents closer in time to
observations within 3-hourly time slots.

Due to the structure of the background error covariance matrix,
vertical corrections are spread over the physical and biogeochemical
variables by using Empirical Orthogonal Functions (EOFs). In order to
derive the set of EOFs used in the experiments, we first run a non-
Table 1
Description of the initial conditions, external forcing, and parameterizations used in the
present OBGCM and shared by all numerical simulations.

Model NEMO BFM

Atmospheric
forcing

CORE bulk formulae
(Large and Yeager, 2008)
ERA-INTERIM atmospheric
data (Dee et al., 2011)

Atmospheric CO2 concentration
of historical and RCP8.5 scenarios
(Moss et al., 2010)
Climatological iron deposition
(Moore et al., 2002) based on
Tegen and Fung (1994, 1995).

River forcing Runoff (Dai and
Trenberth, 2002)

Inorganic nutrients (Cotrim da
Cunha et al., 2007)

Experiment IC 25 years spin-up from
WOA09

DIC, ALK: GLODAP (Key et al., 2004)
Oxygen, inorganic nutrients: WOA09
Iron: Vichi et al. (2007b)

Advection TVD scheme (Harten, 1997) MUSCL scheme (Van Leer, 1979)
Lateral
diffusion

Laplacian operator Laplacian operator

Vertical
diffusion

Turbulent Kinetic Energy
(Blanke and Delecluse, 1993)

Same as T and S

Assimilation
system

3DVar 3DVar

αINS, 17 17
EOFs 10 10
Data output Ten days Ten days
assimilative experiment, from which we obtain an initial set of EOFs
for both the physical and inorganic carbon variables. Then, we set to
zero all cross-correlations between any physical and biogeochemical
variable, and derive a new set of EOFs. These cross-correlations have
been set to zero in order to ensure that the assimilation of biogeochem-
ical quantities does not affect the physical reanalysis, as unrealistic
correlations may arise when the number of biogeochemical observa-
tions is remarkably smaller than the physical ones. The EOFs thus
computed retain all cross-correlations between temperature and salin-
ity, as well as those between DIC and ALK. Since non-zero correlation
between temperature and salinity exists, when only one of the two
physical quantities is assimilated, vertical corrections apply to the
other as well. Similarly, the assimilation of one specific biogeochemical
variable affects the other assimilated biogeochemical property (DIC or
ALK) through the specific cross-correlation term. For the assimilation,
we use ten EOF modes for each vertical profile, which explained vari-
ance averaged over the global oceanic region is 98.9%.

In order to model horizontal correlations, a 4-iteration first-order
recursive filter is used (Purser et al., 2003a, 2003b), with a uniform
horizontal correlation length-scale equal to 300 km for all assimilated
variables. In the OceanVar system, cyclic conditions during the applica-
tion of the recursive filter are approximated by imposing an extension
of thedomainwith duplicated observations on the symmetric extension
zones (Storto et al., 2011).

The assimilation system assumes the observational error covariance
matrix to be diagonal, namely errors between observations are mutual-
ly uncorrelated, and the observation error variance is given by the sum
of instrumental and representativeness errors variances.

Observational errors for the physical variables are derived from the
profiles of instrumental errors provided by Ingleby and Huddleston
(2007), which are subsequentlymultiplied by a coefficient that depends
on the spatial variability at each point (Oke and Sakov, 2008; Storto
et al., 2014) and accounts for large representativeness errors in areas
of strong variability. Since the corresponding information for the obser-
vational errors of inorganic carbon variables is not available within the
GLODAP dataset, we have used the method proposed in Eq. (3) of
Desroziers et al. (2005) to reconstruct the biogeochemical observation
error. This method relates the error variance with the expectation
value of the product between the observation minus background (d)
and the observation minus analysis, i.e. y‐H(xa), with xa representing
the analysis.

The assimilation system performs several data quality controls on
both physical and biogeochemical variables, among which a check
against the climatology and one against background fields that rejects
observations with a too large departure from themodel fields. In detail,
observations are rejected if the square of the errors d2 between the data
and the model outcome is

d2 N αINS σ2
b þ σ2

o

� �
; ð2Þ

where σb is a fixed parameter describing the error associated with the
background and σ0 is the error associated with the observation, and
αINS is a threshold factor. The value of αINS was estimated to ensure
that only a few data outliers are rejected and the use of observational
information is maximized (see Storto et al., 2011). In particular, the as-
similation system was repeatedly applied with different threshold
values and αINS was selected when both the magnitude of misfit range
and rejection rates were in the+/−2% range with respect to the initial
standard statistics. The threshold factors αINS are set as in Table 1.

An assimilation time window of 10 days was here adopted to
balance between the frequency of available observations and the
assumptions implied by the OceanVar scheme. In fact, a shorter time
window would prevent the assimilation system from using a fairly
homogenous observing network, while a longer one would lead to
infrequent corrections with a detrimental impact on the skill scores.

http://bfm-community.eu
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2.3. Observations and statistical assessment

Global temperature and salinity data from the EN-ACT Quality
Checked dataset (EN3, Ingleby and Huddleston, 2007) were used for
the assimilation. Each measurement has been quality controlled by
using a set of objective tests, with data available from 1950 to present
day. This collection comprises several independent data from different
observing platforms, like e.g., moored and expendable bathythermo-
graphs, conductivity-temperature-depth profiles, moored buoys, and
floats such as the instrumentation used in the ARGO project (see
http://www.argo.ucsd.edu). More specifically, the moored buoys
considered in EN3 are the PIRATA floats in the Atlantic basin, the
TOGA-TAO floats in the Pacific basin, and the RAMA floats in the
Indian Ocean (McPhaden et al., 1998).

Global biogeochemical data are obtained from the following
datasets: GLODAP (Key et al., 2004), CARINA (Velo et al., 2009; Olsen,
2009a, 2009b), PACIFICA (Suzuki et al., 2013), the Bermuda Atlantic
Time Series (BATS, Michaels and Knap, 1996), and the Hawaii Ocean
Time series (HOT, Lukas and Karl, 1999). The available number of data
considered in the assimilation system over thewhole period of the sim-
ulations is shown in Fig. 1. For each basin, a different amount of data is
available, clustered over specific years. For example, data in the Pacific
Ocean were mostly collected during the period 1992–1994, while data
in the Indian Oceanwere mostly collected on 1995. Due to the shortage
of available information, we have retained all data prior assimilation,
which are subsequently filtered by the variational assimilation model
under the condition described by Eq. (2).

To assess the overall efficiency of the OceanVar assimilation system,
we computed the Root-Mean Square Error (RMSE) for temperature, sa-
linity, DIC and ALK three-dimensional fieldswith respect to the datasets
above over marine regions selected on the basis of the recent literature
(see Schüster et al., 2013; Sarma et al., 2013; Ishii et al., 2014; Lenton
et al., 2013; regions listed in Table 2).We only considered data collected
in the entirewater column, excluding the outliers larger than 3 standard
deviations from the mean of the dataset. The latter condition selects
data depending on the statistical properties of the data only, and it is in-
dependent from the filtering performed by the OceanVar scheme in
Eq. (2). Although RMSE is a metric potentially affected by the sampling
and the representativeness of the verifying observations, our choice
stems from its widespread use as intuitive and summarizing skill
score and ease of comparison among the experiments and with other
published works.

Given themultivariate nature of the experiments, it is useful to have
a graphical representation of the RMSE metric for the different regions
that enables for the comparison of changes due to the sequential assim-
ilation of physical and biogeochemical data. This was done using the
non-metricmultidimensional scaling (MDS) that is an ordinationmeth-
od to refit the original data into a low dimensional space (here 2D). A
Fig. 1. Number of DIC (left) and ALK (right) data used in the assimilation for the Atlantic (blue)
this composite inorganic carbon dataset is given in Section 2.3.
symmetrical matrix for all pairwise distances among the original data
is computed using a suitable distance metric, here assumed to be the
Manhattan or cityblock distance (Cox and Cox, 2000). An iterative
procedure is then used to test the goodness of fit between the
ordination-based distance matrix (computed for different refits of
data) and the distance matrix of the original data. The Kruskal's Stress
function is minimized through iteration and a value lower than 0.2
was here adopted to select the optimal refit of the original distances in
the lower dimensional space.

In the case of physical data the validation step aims mostly to
demonstrate the efficiency of the assimilation system in this specific
simulation. However, it does have a merit in the assessment of the
carbonate system variables because it allows evaluating the improve-
ments due to the assimilation of physical variables (when DIC and ALK
are not assimilated), as well as providing a reference for the combined
assimilation.

The simulated surface pCO2 fields were assessed against data from
the Surface Ocean CO2 Atlas (SOCAT2, Sabine et al., 2013; Bakker et al.,
2013) a global pCO2 dataset that reports measurements of pCO2 at
surface waters collected from 1968 to 2012.

The estimated air–sea flux of CO2 comes fromTakahashi et al. (2012)
that provides data referred to the nominal year 2000 over a 4° × 5° reg-
ular grid. Other global and regional estimates of CO2 fluxes have been
taken from Rödenbeck et al. (2014), Landschützer et al. (2014a,
2014b), Park et al. (2010), Peters et al. (2010), Peylin et al. (2013),
Jacobson et al. (2007a, 2007b), Le Quéré et al. (2015) and Wanninkhof
et al. (2013).

Both the SOCAT2 and Takahashi et al. (2012) datasets are not includ-
ed in the assimilation system to enable an independent assessment of
the pCO2 fields and the air–sea CO2 flux.

2.4. OBGCM setup and numerical simulations

Weperform three different numerical simulations covering the peri-
od 1988–2010:

1. A control run (CTRL) without any data assimilation;
2. A physical reanalysis (TSRE) where we assimilate in-situ tempera-

ture and salinity data;
3. A reanalysis (here REAN) where we assimilate in-situ temperature,

salinity, alkalinity and dissolved inorganic carbon.

In all experiments, we used the same parameterizations for the
ocean and the biogeochemical models. The oceanic component has
been spun up by repeating the year 1988 twenty-five times. Initial con-
ditions for the temperature and salinity fields were obtained from the
WOA09 dataset, whereas the zonal and the meridional components of
the velocity fields start from rest. Initial conditions, external forcing,
and parameterizations used are summarized in Table 1.
, Pacific (Orange) and Indian (red) oceans, for each year of the simulation. A description of

http://www.argo.ucsd.edu


Table 2
Root-Mean Square Error (RMSE) of temperature (in °C), salinity, DIC (in μmol/kg), and ALK (in μmol/kg), computed against the datasets presented in Section 2.3 in the period 1988–2010.
Region codes: ARCT: Arctic Sea (N80N); ATL-NSP: Subpolar North Atlantic (50 ÷ 80N); ATL-NST: Subtropical North Atlantic (14 ÷ 50N); ATL-T: Tropical Atlantic (15S ÷ 14N); ATL-SST:
Subtropical South Atlantic (40 ÷ 15S); PAC-N: North Pacific (18 ÷ 66N); PAC-T: Tropical Pacific (18S ÷ 18N); PAC-S: South Pacific (44.5 ÷ 18S); IND-T: Tropical Indian (18S ÷ 30N);
IND-S: South Indian (18S ÷ 44S); SO: Southern Ocean (44 ÷ 75S). The last column reports the total number of DIC and ALK data used in REAN (Section 2.3).

Code
Temperature (°C) Salinity DIC (μmol/kg) ALK (μmol/kg) # Data

CTRL TSRE CTRL TSRE CTRL TSRE REAN CTRL TSRE REAN DIC + ALK

ARCT 0.89 0.79 0.55 0.33 47.6 49.9 30.1 30.8 35.5 24.4 31
ATL-NSP 1.23 0.92 0.30 0.21 33.8 32.0 24.6 24.3 22.8 19.9 8557
ATL-NST 1.22 0.95 0.30 0.26 26.2 31.4 22.4 27.8 26.0 18.2 20,364
ATL-T 1.34 0.95 0.28 0.20 50.6 58.2 40.4 35.6 27.2 24.3 2579
ATL-SST 1.17 1.00 0.21 0.18 22.3 22.3 16.8 19.5 20.5 17.3 1785
PAC-N 1.37 1.02 0.21 0.16 43.7 47.0 33.0 20.9 28.4 15.2 34,507
PAC-T 1.11 0.92 0.19 0.15 39.8 44.3 32.1 17.5 21.1 14.3 22,285
PAC-S 1.18 0.94 0.22 0.13 24.2 28.7 18.9 13.2 13.7 11.0 4695
IND-T 1.36 1.23 0.26 0.18 59.8 66.8 43.6 32.4 38.6 20.8 1325
IND-S 1.43 1.12 0.23 0.16 22.8 26.1 22.4 23.5 25.8 13.6 2576
SO 1.16 0.82 0.23 0.16 26 27.3 20.9 14.3 14.4 11 9147
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3. Results

3.1. Assessment of the assimilated variables

The RMSE errors computed against the assimilated datasets for the 3
simulations over a selected number of ocean regions and over the entire
ocean depth (see Section 2.3) in the period 1988–2010 are presented in
Table 2.

On average, the assimilation of physical data reduces the RMSE with
temperature and salinity observations by about 20–30%, reducing the
temperature error below 1 °C in almost every region considered but
the Indian Ocean. One major correction for temperature occurs in the
Northern and Tropical Atlantic Ocean and for salinity in the South Pacific
Oceanwhere in this case the RMSE is reduced to 40%with respect to the
CTRL simulation.
Fig. 2. Two-dimensional ordination for themultivariate RMSE indicators (temperature, salinity,
(purple), and REAN (green) experiments over the different marine regions listed in Table 2. Th
The impact of the ocean physics improvements on DIC and alkalinity
is however limited to certain regions, and not always the same ones
where the physical model error is reduced the most. For instance, DIC
benefits from the assimilation of temperature and salinity observations
only in the Subpolar Atlantic region, and ALK only in the North and
Tropical Atlantic regions. In all other areas, the simulations of DIC and
ALK in TSRE show larger RMSE with observations with respect to the
CTRL. The impact of the combined assimilation of physical and inorganic
carbon variables is, on the other hand, positive in all the regions, reduc-
ing the RMSEwith observationswith respect to both the CTRL and TSRE
experiments everywhere with peaks of about 40% reduction.

The values of the RMSE indicators for temperature, salinity, DIC and
ALK in every region and every experiment are combined to give a mea-
sure of the distance from a perfect reference simulation without errors
(all RMSE equal to 0) using the MDS method (see Section 2.3). This
DIC and ALK), as obtained with the MDSmethod (see Section 2.3), in CTRL (orange), TSRE
e blue dot is a reference perfect experiment when all RMSE values are zero.
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operation returns the plot shown in Fig. 2, where the axes are arbitrary
and distances are representative of the quality of the simulation in that
region.

It is evident that the combined assimilation in REAN reduces
the multivariate RMSEs shifting almost all region points toward the
reference and closer to each other. The figure shows for instance that
Northern subtropical Atlantic (indicated with the code ATL-NST) is
first shifted closer to the reference because of the assimilation of physi-
cal data and further more by the carbonate variable data. The use of
inorganic carbon data also improves some of the regions that showed
a worseningwith the physical assimilation. For instance, the discrepan-
cies in the reconstruction of the inorganic carbon variables obtained in
TSRE for the Indian and Pacific oceans (see for instance the tropical Pa-
cific region, PAC-T) are corrected with the assimilation of the inorganic
carbon variables in REAN.

In Figs. 3 and 4 we show the time series of SST, SSS, surface DIC, and
surface ALK for the three experiments, compared with the sustained
observations at the two stations at BATS and HOT. For both stations,
observed data present a positive trend in surface DIC because of the
atmospheric increase in the CO2 concentration, which was generally
reconstructed in all experiments.

BATS (Fig. 3) belong to the Subtropical North Atlantic region that
shows a marked improvement by physical data assimilation only. In
fact, CTRL has lower salinity and warmer temperature than observed;
both facts contribute to high evaporation rates (Fig. 5a) and to a more
stratified water column that determine an unrealistic trend in the
surface concentrations, especially for alkalinity. The assimilation of
temperature and salinity in TSRE determines a strong reduction of the
evaporation process, which in turn leads to a strong reduction of the
positive trend in ALK and an improved seasonal variability. The further
assimilation of inorganic carbon data drives both DIC and ALK toward a
closer agreement with the observations, even if the latter is better
constrained only after the year 1992 when more data are available.

The CTRL simulation atHOT (Fig. 4) shows a remarkable overestima-
tion of surface salinity, while the surface temperature is satisfactorily re-
producing the observations. Conversely to what found at BATS, the
Fig. 3. Time series of ocean variables at surface at BATS, obtained from each experiment consid
over the first 10 m depth at each station.
assimilation of physical data is heavily correcting the salinity bias,
namely RMSE reduces from 0.36 to 0.19, and leads to a significant
increase in the net freshwater flux (Fig. 5b). Such an enhanced evapora-
tion determines both the bias and positive trend obtained in TSRE for
the simulated DIC and ALK. However, these unrealistic changes in the
inorganic carbon variables are successfully corrected in the REAN
simulation.

The results of the REAN simulation at BATS and HOT show the ad-
vantage of having a relatively high abundance of DIC and ALK data:
the assimilation system corrects the discrepancy moving the model to-
ward the observations. This is a demonstration of the efficiency of the
adopted assimilation system that is expected to improve the carbonate
system equilibrium also in oceanic areas where data are less abundant
compared to these stations. This will be analysed in the next section
comparing the results over the various regions against the independent
surface pCO2 data.

3.2. Regional analysis of surface pCO2 field

In Fig. 6 we assess the simulated surface pCO2 against the Surface
Ocean CO2 Atlas (see Section 2.3), by computing the RMSE between
the monthly pCO2 data of the dataset and the corresponding values
from each simulation for the period 1988–2010. Since we do not
assimilate pCO2 data into the OBGCM, this assessment represents a
totally independent validation of the assimilation system.

In the whole Atlantic Ocean, the RMSE against data decreases with
the subsequent assimilation of physical (TSRE) and both physical and
inorganic carbon (REAN) data. In general, the assimilation of physical
data worsens surface pCO2 in the Arctic, Pacific and Indian oceans,
with respect to those computed for CTRL. The assimilation of DIC and
ALK counters this effect and improves pCO2 in the Tropical Indian
ocean, also lowering the RMSE obtained in the South Pacific and South
Indian oceans, even if with values still larger than those obtained in
the CTRL simulation. However, despite the assimilation of DIC and ALK
data that has led to an overall improvement of the main carbonate sys-
tem variables (see Table 2 and Fig. 2), the RMSE of surface pCO2 in the
ered: CTRL (blue), TSRE (red), REAN (dark green). The black dots show the data collected



Fig. 4.Time series of ocean variables at surface at HOT, obtained from each experiment considered: CTRL (blue), TSRE (red), REAN (dark green). The black dots show the data collected over
the first 10 m depth at each station.
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Arctic andNorth Pacific is larger in REAN than in the control runwithout
any data assimilation. Finally, the Southern Ocean is the unique region
where the physical-only reanalysis slightly improves the simulation of
pCO2, while the additional assimilation of inorganic carbon data leads
to an RMSE that is larger than CTRL. All these cases will be compared
and further discussed in Section 4.

The North Pacific Ocean is the most notable region where physical
data assimilation increases the error of surface pCO2 and, whereas im-
provements in DIC and ALK are obtained with their direct assimilation,
its error becomes even larger. By looking at the differences between
the three experiments (Fig. 7), the physical data assimilation leads to
colder but less saline surface waters similarly to what shown in the
Fig. 5. Time series of mean annual net freshwater flux at (a)
results at HOT (Section 3.1 and Fig. 4). Despite the data-driven cooling
of surface waters, the salinity corrections in REAN have a major effect
on the evaporation rate in the North Pacific Ocean that has a positive
bias in comparison to CTRL (Fig. 7c). This modified freshwater flux is
physically consistentwith the correction, but it also impacts the concen-
trations of DIC and ALK whose surface concentrations steadily increase
in the REAN simulation (Fig. 7d,e). The assimilation of inorganic carbon
data is not sufficient to correct this imbalance in the North Pacific as a
whole, since observations in this area are rather scarce and concentrat-
ed over specific years (supplementary Fig. S1). The available data allow
to partly reduce the overall RMSE (see Table 2), but after year 2000, the
REAN experiment is very little constrained by observations and the lack
BATS and (b) HOT for the CTRL and TSRE simulations.



Fig. 6. Root-Mean Square Error (RMSE) of surface pCO2 (μatm) against the SOCAT2 dataset in the selected marine regions (see caption of Table 2 for a description).
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of combined assimilation of physical and carbon data thus leads to a
spurious departure in the REAN pCO2 (Fig. 7f).

3.3. Assessment of air–sea CO2 fluxes

The statistical indicators for the globally integrated air–sea CO2 flux
for the three simulations are summarized in Table 3, where we have
computed the average, decadal trend, InterAnnual Variability (IAV)
and Seasonal Variability (SV) over the period 1992–2010 for the three
simulations. The air–sea CO2 fluxes indicate that the global ocean is al-
ways acting as a sink (negative values) and the sequential assimilation
of physical and inorganic carbon data leads to a significant reduction,
namely from −4.7 Pg C/yr in the CTRL simulation to −2.4 Pg C/yr in
the REAN one. Similarly, the interannual and seasonal metrics are char-
acterized by decreasing values, but IAV shows a major change in the
TSRE run and SV mainly reduces with the additional assimilation of
DIC and ALK. The decadal trends obtained with a least-squared fit for
each simulation have quite different values, which are not distinguish-
able from zero since the uncertainty on the trend is on the same order
of the trend itself.

The impacts of assimilation on the regional distribution of mean an-
nual fluxes are illustrated in Fig. 8, which shows the air–sea CO2 flux cli-
matological field obtained from the dataset by Takahashi et al. (2012)
and compare it with the three experiments for the period 1992–2010.
The Atlantic Ocean stands out as the ocean with the largest differences
from the climatological estimates; the large sink in the Northern Atlan-
tic region is substantially reduced in TSREAN and further improved in
REAN. A similar consideration can be done for the Northern Indian
Ocean,where the large sink bias of the CTRL is appropriately reduced to-
ward a source by the assimilation of physics. The assimilation of carbon
data is then enhancing this source, possibly exceeding the estimates be-
cause of the presence of coastal data with high alkalinity. The inorganic
carbon source in the tropical Pacific is evidently increased as estimated
in the Takahashi et al. (2012) thanks to data assimilation, although the
region of source is still too confined within the tropics (Vichi et al.,
2011). The tropical Atlantic is also not well represented in both CTRL
and TSRE, while the additional assimilation of inorganic carbon data de-
termines a reduction of the CO2 sinking flux.

Estimates of the climatological air–sea CO2 flux integrated over the
selected marine regions for the three experiments are presented in
Table 4. Overall, the assimilation system leads to a reduction of the
CO2 fluxes in the regions located at mid latitudes, in the Tropical
Indian and Pacific oceans, and to a lower extent in the Tropical Atlantic.
In particular, the major sinks in the REAN simulation occur in ATL-NST,
PAC-N, and PAC-S regions. Conversely, the Arctic and Subpolar Atlantic
regions have nearly unchanged values within the different simulations.
The only positive value of the CO2 flux was obtained for the Southern
Ocean region in the REAN simulation.

4. Discussion

The set of experiments presented in this work combines the assimi-
lation of physical data and the assimilation of inorganic carbon data
with the final aim to better constrain the dynamics of the carbonate sys-
tem and the related air–sea CO2 flux.

The key question addressed in the previous sections is whether the
assimilation of physical and carbon data is likely to improve the surface
carbon fluxes by improving the representation of pCO2.

A summary of all thefindings presented in Section 3 is given in Fig. 9,
where the change in pCO2 RMSE for each region and experiment is plot-
ted against the corresponding change in the multivariate combined
RMSE (shown Fig. 2). The latter is computed as the change of the
Euclidean distance between the region points and the reference in
Fig. 2 for each assimilation run against the CTRL one. Fig. 9 clearly
shows that the assimilation of physics is a necessary first step to im-
prove pCO2 simulation in the Northern and Tropical Atlantic (bottom-
left quadrant), whereas an opposite effect was obtained, i.e., for the
North Pacific (top-right quadrant). The bottom-line is that the assimila-
tion of temperature and salinity leads to significant changes in surface
physical processes, which have a twofold impact on the inorganic car-
bon variables. Besides the improved solution of biogeochemical pro-
cesses under more realistic physical conditions, the modification of
evaporation rates will directly impact other conservative oceanic prop-
erties, like e.g. alkalinity. Such a feedback of the physical assimilation
was clearly identified at BATS and HOT stations (see Section 3.1), as
the changes in surface concentrations of DIC and ALK were driven by
those of the evaporation rates (Fig. 5). This condition occurs very likely
for the whole North Pacific and North Atlantic regions, thus explaining
the opposite effect produced by the physical assimilation and indirectly
pointing to an imbalance due to whether the atmospheric forcing fields
or the bulk formulations. In all other regions, an improved representa-
tion of physical variables – as demonstrated by the reduced RMSE for
temperature and salinity in Table 2 –does not lead to significantly better
inorganic carbon in the ocean, although there may still be an improve-
ment of pCO2 due to better constraints on temperature control.

On the other hand, once DIC andALK are assimilated, pCO2 improves
almost everywhere, which is expected to better constrain the air–sea
CO2 fluxes. It is not a substantial improvement but certainly in the de-
sired direction. An average error reduction of 3–5 μmol is comparable
to the error attributed to the parameterization of gas exchange piston
velocity (Takahashi et al., 2009), which implies that data assimilation
may help to reduce the overall uncertainty.



Fig. 7.Difference in the mean SST, SSS, evaporation, surface DIC, surface ALK, and surface pCO2, averaged over the North Pacific region. The difference is taken between TSRE and CTRL for
temperature, salinity, and evaporation flux, and also between REAN and CTRL for the inorganic carbon variables.
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How is it possible to reconcile the regions where pCO2 worsens due
to the assimilation of inorganic carbon data, even if the improvement
against those variables is large (Fig. 9 bottom-right quadrant)? The typ-
ical example is the Arctic, where the assimilation of a limited number of
observationsmarkedly reduces the RMSE for DIC and ALK (see Table 2).
However, these data are just enough to reduce the model bias but not
sufficient to capture the pCO2 variability found in the SOCAT data and
the RMSE increases (Fig. 6). A similar consideration can be done for
the Southern Ocean. Both the Arctic and Southern Ocean have been
sampled for pCO2 only for one month out of the year (Sabine et al.,
2013, most likely during summer) and the eddy-driven spatial variabil-
ity, which is estimated to account for an error of about 3 μmol (Lenton
et al., 2006), is likely to become the dominant factor. Given the coarse
resolution of this model, the corrections applied to the simulated DIC
and ALK are actually worsening the performance of REAN against
TSRE. The assimilations of the more numerous physical data in the
Southern Ocean lead to a representation of the pCO2 field that is better
than assimilating sparse observations of inorganic carbon (see Fig. S2
for the map of the assimilated data per model grid point).

The case of the North Pacific has been explored in detail in
Section 3.3. The results of this work indicate that both physical and car-
bon variables should be assimilated to reach an improved representa-
tion of carbonate system variables. Supplemental Figs. S1 and S2 show
that the North Pacific carbon data are unevenly distributed in time
and have lower data density with respect to the northern Atlantic
Ocean (Landschützer et al., 2013). This implies that there must be
more adequate temporal and spatial collection of carbon data to im-
prove pCO2 in the North Pacific as it occurs for the Atlantic.

The final question is whether data assimilation actually improves
the simulation of the carbon flux between ocean and atmosphere. This
issue is necessarily related to the quality of the specific model being
analysed, and in this particular case the model presented a substantial
overestimation of the annual mean ocean uptake that can be reduced
by means of the assimilation of physical and inorganic carbon data



Table 3
Statistical properties (average, trend, inter-annual and seasonal variability, IAV and SV, respectively) of the global average value of the air–sea CO2 flux over the period 1992–2010. Also
shown are the comparisons with results from literature.

Air–sea CO2 flux Average
(Pg C/yr)

Trend (*0.01 Pg
C/yr/decade)

IAV
(Pg C/yr)

SV
(Pg C/yr)

Method Notes

CTRL −4.7 0.9 ± 1 0.40 0.97 OBGCM 1992–2010
TSRE −3.3 0.1 ± 0.9 0.28 0.80 OBGCM 1992–2010 T + S Assimilation
REAN −2.4 0.7 ± 0.9 0.22 0.69 OBGCM 1992–2010 T + S + DIC +

ALK Assimilation
Wanninkhof et al. (2013) −1.9 ± 0.3 −0.14 0.16 0.38 Ensemble of 6 OBGCM 1990–2009 Anthropogenic,
Wanninkhof et al. (2013) −2.1 ± 0.3 −0.13 0.40 0.41 Ensemble of 11 OIM 1990–2009 Anthropogenic
Wanninkhof et al. (2013) −2.0 ± 0.6 – – – Tier 1 (Canadell et al., 2011) 2000 Anthropogenic
Zeng et al. (2014) −1.9 ÷ −2.3 – – – NNM 1990–2011 Anthropogenic
Le Quéré et al. (2015) −1.9 ± 0.5 – – – Ensemble of 8 OBGCM 1959–2015
Rödenbeck et al. (2014) −1.45 −0.64 0.29 – OC V1.2 2001–2011
Landschützer et al. (2014a, 2014b) −1.70 −1.13 0.08 – CDIAC Global Carbon Project 2001–2010
Park et al. (2010) −1.28 −0.23 0.09 – Diagnostic model with empirical relationships 2001–2011
Jacobson et al. (2007a, 2007b) −2.62 −0.62 0.03 CTE2014 2001–2011
CTE2014 (Peters et al., 2010) −2.27 ± 0.77 −0.69 CTE2014 2001–2013
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(Section 3.3). As presented in the introduction, global carbon models
have been demonstrated to agree on the annual global means and to
some extent on some regional means. Table 3 compare the global air–
sea CO2 flux simulated in the three experimentswith the results obtain-
ed in previous literature works using different forward ocean models
and atmospheric inversion models.

In Le Quéré et al. (2015), the ocean flux is computed over the period
1959–2013 by using an ensemble containing seven OBGCMs. For each
model, the reconstructed air–sea CO2 flux has been normalized to
observations by dividing it by the observed average over the period
1990–1999 (Keeling et al., 2011), then multiplying the result by
2.2 Pg C/yr, obtaining a multi-model mean of −1.9 Pg C/yr with stan-
dard deviation 0.5 Pg C/yr.
Fig. 8. Map of the climatological mean air–sea CO2 flux (in mol C/m2/year) over the
Wanninkhof et al. (2013) also obtained −1.9 ± 0.3 Pg C/yr with a
trend −0.14 Pg C/yr/decade, by using an ensemble mean consisting of
six OBGCMs, and−2.1 ± 0.3 Pg C/yr with trend−0.13 Pg C/yr/decade,
by using eleven Ocean Inversion Models, for the period 1990–2009. As
the trend for the considered period is mostly due to human activities,
our findings are closely comparable to those of Wanninkhof et al.
(2013). The air–sea flux simulated by CTRL in the present OBGCM is
clearly higher if compared to the results of the other global models.
The assimilation of the inorganic carbon variables allows reducing the
bias.

In general, OBGCMs simulate a higher air–sea CO2 flux with respect
to the available ocean inversion models (Rödenbeck et al., 2014;
Landschützer et al., 2014a; Park et al., 2010; Peters et al., 2010; Peylin
period 1992–2010, for the dataset from Takahashi and the three experiments.



Table 4
Annual air–sea CO2 flux (in Pg C/yr) averaged over the selected marine regions (see cap-
tion of Table 2 for a description) for the three experiments in the period 1992–2010, com-
pared with the recent literature findings from Schüster et al. (2013) (a), Ishii et al. (2014)
(b), Sarma et al. (2013) (c), and Lenton et al. (2013) (d).

Marine region CTRL TSRE REAN Literature

ARCT −0.01 −0.01 −0.01 −0.12 ± 0.06a

ATL-NSP −0.09 −0.10 −0.09 −0.21 ± 0.06a

ATL-NST −0.77 −0.61 −0.54 −0.26 ± 0.06a

ATL-T −0.58 −0.50 −0.35 0.12 ± 0.04a

ATL-SST −0.38 −0.32 −0.28 −0.14 ± 0.04a

PAC-N −0.47 −0.42 −0.31 −0.47 ± 0.13b

PAC-T −0.47 −0.16 −0.07 0.44 ± 0.14b

PAC-S −0.42 −0.28 −0.32 −0.37 ± 0.08b

IND-T −0.50 −0.15 −0.10 0.08 ± 0.04c

IND-S −0.50 −0.41 −0.41 −0.43 ± 0.07c

SO −0.26 −0.20 0.04 −0.42 ± 0.07d
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et al., 2013), although the values obtained by the inversions in Jacobson
et al. (2007a, 2007b) and Peters et al. (2010) lie within the inter-annual
variability (IAV) obtained in our simulations. Also the seasonal variabil-
ity decreaseswith data assimilation toward values that are close towhat
obtained in other works. The IAV of the air–sea CO2 flux obtained in the
experiments varies from 0.22 to 0.40, and the estimates over the period
1990–2009 in the literature give a similar range. The errors associated
with this quantity are however large, although all of the results from
our experiments fall within the range given in the literature.

These comparisons indicate the positive role played by data assimi-
lation, although without an independent measure of the carbon fluxes
in the various regions it is not possible to assess the overall quality.
The comparison of model results with some recent assessment of the
Fig. 9. Comparison of improvements in pCO2 RMSE and errors in physical and inorganic car
is computed as the change of the Euclidean distance in Fig. 2 between a region point and the r
quadrant are the ones where improvements in physics and/or carbonate variables lead to conc
regional air–sea CO2fluxpresented in Table 4 indicates an improvement
in some key regions. The main differences with the results reported in
the literature are found in the tropical regions, which however have
been demonstrated to improve against the independent pCO2 SOCAT
data (Fig. 6). These discrepancies are probably linked more to method-
ological differences and to the scarcity of data rather than to substantial
problems.

5. Conclusions

This work has shown that the data-driven correction of the factors
regulating the concentration of carbonate system variables do not guar-
antee that pCO2 is closer to the observations in a global ocean carbon
model having the spatial resolution used in the last round of CMIP sim-
ulations. However, some important findings have emerged. The assimi-
lation of physical data only has shown to improve pCO2 in the North
Atlantic Ocean and in the Southern Ocean, the latter being a region
where the extensive collection of carbon data is much more difficult.
The correction of physical model errors has a direct effect on evapora-
tion that helps to constrain alkalinity biases, although this does not
occur in all the regions and especially in the North Pacific. The concur-
rent assimilation of dissolved inorganic carbon and alkalinity may help
to reduce the errors in some regions such as the tropics, also leading
to improvedfluxes. In general, errors in pCO2 are reduced of a factor cor-
responding to those introduced by to the air–sea flux formulations.
However, the spatial and temporal distribution of the available data
appears to be an important constraint to the effective improvements.

Since a global-scale network for collecting inorganic carbon data is
still under development, the current monitoring network for the global
physical ocean is likely to be the most readily available resource to
bon variables for the two assimilation experiments. The multivariate RMSE difference
eference for each assimilation experiment against the CTRL one. Regions in the lower left
urrent improvements in the pCO2 RMSE.
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increase the confidence on air–sea carbon fluxes especially in remote
regions like the Southern Ocean.
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