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Data assimilation in the FOAM operational short-range
ocean forecasting system: a description of the scheme and its

impact
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ABSTRACT: A detailed description of the data assimilation scheme used in the Forecasting Ocean Assimilation Model
(FOAM) operational ocean forecasting system is presented. The theoretical basis for the scheme is an improved version of
the analysis correction scheme, which includes information from previously assimilated data. The scheme requires the a
priori specification of error covariance information for the background model field and the observations. The way in which
these error covariances have been estimated is described and some examples are given. The FOAM system assimilates sea
surface temperature, sea-level anomaly, temperature profile, salinity profile and sea-ice concentration data. Aspects of the
scheme that are specific to each of these observation types are described.

Two sets of experiments demonstrating the impact of the data assimilation are presented. The first set are in an idealized
identical-twin setting, using the 1

9
°-resolution North Atlantic FOAM configuration in which the state of the true ocean

is assumed to be known. These experiments show that the analyses and forecasts are improved by assimilating the
altimeter sea-level-anomaly data. The second set of experiments comprise data impact studies in a realistic hindcast
setting. These experiments show a positive impact on the analyses from the Argo temperature- and salinity-profile data. 
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Ltd
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1. Introduction

The operational Forecasting Ocean Assimilation Model
(FOAM) system run at the UK Met Office is used
to predict properties of the open ocean (temperature,
salinity and currents) and sea ice. It consists of a suite
of nested model configurations, which produce daily
analyses and forecasts, out to 5 days ahead, of the
ocean and sea-ice variables. FOAM is the main UK
input to the Global Ocean Data Assimilation Experiment
(GODAE), which aims to provide a demonstration of
the international ocean-forecasting community’s ability
to provide information about the current and future
state of the ocean. FOAM is also contributing to the
Marine Environment and Security for the European Area
(MERSEA) project, which will provide monitoring and
forecasting services to intermediate users and policy-
makers.

The model component of FOAM is based on the
ocean element of the model used for climate prediction
at the Hadley Centre (Gordon et al., 2000). It is a z-
level model, and is described in detail in (Hines et al.,
2007). Configurations that are currently run operationally
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include a global 1°-resolution model, a 1
3

°
-resolution

model of the North Atlantic and Arctic, and a 1
9

°
-

resolution model of the North Atlantic, each of which has
20 vertical levels. Data from the operational 1°- and 1

9
°
-

resolution models are made freely available for research
use in near-real time from the Live Access Server at
http://www.nerc-essc.ac.uk/godiva.

Model forecasts require the specification of initial
conditions, and the accuracy of the forecast depends to a
large extent on the accuracy of the initial conditions. In
order to produce initial conditions that accurately reflect
the current state of the ocean, a previous model forecast
is combined with observations, using a data-assimilation
scheme. The scheme used in the FOAM system has
been significantly upgraded since the paper of Bell et al.
(2000). The aim of this paper is to provide a detailed
description of the current method used in the FOAM
system, together with some examples of its impact.

The theoretical basis of the data-assimilation scheme
used in FOAM is described in Section 2, which includes
an overview of the method used to produce the spatial
analysis, together with a description of the method used
to include time information in the analysis. Section 3
describes the way in which the scheme has been imple-
mented in the operational FOAM system. A description
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of the error covariances used in the scheme, together with
specific issues associated with each of the observation
types that are assimilated, is given. The way in which the
updates to the model are implemented, and issues relat-
ing to systematic errors, are also discussed. The impact of
the data-assimilation scheme in both identical-twin exper-
iments and real-world experiments is described in Section
4, together with some observational impact studies. Sec-
tion 5 provides a summary and a discussion of planned
upgrades to the system.

2. Theoretical framework of the data-assimilation
scheme

A large number of methods for combining model and
observational data are described in the literature. These
can be broadly split into three approaches: variational
methods, such as 3D-Var and 4D-Var (Lorenc, 1986),
based on minimization of a cost function that measures
the differences between the model and the observations;
various levels of approximation to the extended Kalman
filter, generally known as sequential schemes (Daley,
1991); and ensemble-based schemes such as the ensemble
Kalman filter (Evensen, 1994). Each of these approaches
has its advantages and disadvantages with respect to the
level of approximations made, complexity and computa-
tional cost.

In an operational system such as FOAM, there are vari-
ous constraints that influence the type of data assimilation
scheme that can be used. The main constraints are the
amount of time and computer power available to run the
scheme, together with the requirement that the system
be robust. Other issues that influence the type of scheme
used include the nonlinear nature of the ocean at the high
resolution used in FOAM, and the number of observa-
tions available for assimilation on a daily basis. All of
these constraints, together with the fact that we only have
a limited knowledge of the errors in the observations and
model, have led to the development of a relatively simple
methodology for use in the FOAM system. It is based on
an ‘optimal interpolation’-type scheme that approximates
the Kalman filter (where the error covariance matrices
are not evolved with time), as described in Section 2.1.
Some aspects of more complicated schemes (such as 4D-
Var) are also included in order to extract the maximum
amount of information from the available observations
and model (see Section 2.2).

2.1. Spatial analysis

The generalized optimal-interpolation analysis equation
at time tk can be written as:

xa
k = xf

k + BHT(HBHT + R)−1(yk − h(xk)), (1)

where xk is a vector containing the state variables at each
grid point, yk is a vector containing the observations, h is
the observation operator (which converts variables from

model space to observation space), H is the Jacobian of
the observation operator, B is the model forecast error
covariance, and R is the observation error covariance;
superscript ‘a’ indicates an analysis and superscript ‘f’
indicates a forecast. The notation is based on that of (Ide
et al., 1997).

The assimilation scheme used in the FOAM system is
based on the analysis correction (AC) method introduced
by Lorenc et al. (1991). This method provides an efficient
means of calculating the solution to Equation (1) using an
iterative procedure. The iteration is initialized by setting
x0

k = xf
k and y0

k = yk , and the νth iterate is obtained using
the equations:

xν+1
k = xν

k + BHTQ(yν
k − h(xν

k))

yν+1
k = yν

k − RQ(yν
k − h(xν

k))

}
, (2)

for ν = 0, 1, . . . , N − 1. The analysis is then set equal to
the last iterate: xa

k = xN
k . The component of the matrix Q

in the ith column and j th row is defined as

Qij = δij




I∑
j=1

(
HBHT + R

)
ij




−1

, (3)

where

δij =
{

1 i = j

0 i �= j
,

and I is the number of observations.
Bratseth (1986) and Lorenc et al. (1991) have shown

that provided the xν
k and yν

k obtained using Equation (2)
converge, they converge respectively to the analysis given
by Equation (1) and to the ‘observation’ values h(xa

k)

corresponding to that analysis. A fixed number of 10
iterations are used in the FOAM system. This number was
determined by performing some sensitivity experiments
in which the number of iterations was varied and the
results compared with independent in situ temperature
data. Fewer iterations than this resulted in a less accurate
analysis, and there was little gain in accuracy from
increasing the number of iterations. However, the number
of iterations will depend on various aspects, including
the model resolution and the data density, and should be
recalibrated when any of these aspects are changed.

The matrix multiplication in Equation (2) – BHTz
where z = Q

(
yν

k − h(xν
k)

)
– is the most costly aspect of

this procedure. It has been shown by Lorenc (1992) that
successive applications of a recursive filter on the values
of z (in model space) provide a good approximation to
this matrix multiplication when Gaussian or second-order
autoregressive (SOAR) functions are used to approximate
the off-diagonal elements of B. This application of the
filter is used in FOAM to approximate the effect of SOAR
correlation functions using the covariance information
described in Section 3.1. The term HBHT in Equation (3)
is calculated by filtering the background error variances
and then interpolating them to the observation locations
using a bilinear interpolation.
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Equation (2) is written as a fully three-dimensional
analysis of the model state. In practice, the analysis is
decomposed into separable horizontal and vertical parts.
For in situ profile data, a vertical analysis is performed
first, to produce a vertical profile of observational incre-
ments and their error estimates on model levels. These are
then used in a set of horizontal analyses, one on each ver-
tical level. For surface data types such as altimeter data,
a horizontal analysis is performed first, and the verti-
cal correlations are specified analytically, as described in
Section 3.2. This decomposition has the disadvantage that
the full three-dimensional correlations cannot be applied,
although these are rarely known in practice.

2.2. Timeliness aspects

The above method is designed to work at one particular
‘analysis’ time at which the background model field
is valid. The observations that have become available
during the period since the last analysis are usually
treated as if they are all valid at the analysis time, taking
into account the time correlations of the observations
(unlike in a ‘first-guess-at-appropriate-time’ scheme).
However, the number of new observations that become
available during one analysis period is small, and a
scheme has been devised that allows the information from
previous analysis cycles to be properly included in the
current analysis. This timeliness aspect of the assimilation
scheme is now described.

In order to take account of information from previ-
ous analyses, we first present the result that it is pos-
sible to process observations in batches using the same
background error covariance matrix, and still obtain the
optimal analysis: for two subsets of observations,

yk =
(

y1,k

y2,k

)

h(xk) =
(

h1(xk)

h2(xk)

)

R =
(

R1 0
0 R2

)




, (4)

it is possible to analyse each subset separately, with
the second analysis using the first analysis instead of a
background field, and the observational increments for
the first analysis set to zero. The second analysis then
produces the same values as would have been obtained
if both sets of observations had been analysed together.
That is, if the analysis is performed in two steps, both
of which use the same background error covariance
matrix –

xa
1,k = xf

k + BHT
1

(
H1BHT

1 + R1
)−1(y1,k − h1(xf

k)
)
(5)

and

xa
2,k = xa

1,k +

+ BHT(
HBHT + R

)−1
(

0
y2,k − h2(xa

1,k)

)
(6)

– then provided there are no cross-correlations between
the errors in the first set of observations and those in the
second set, and that the observation operator is linear,
the second analysis is identical to the analysis produced
from Equation (1), that is,

xa
2,k ≡ xa

k. (7)

See Appendix A for a proof. This result applies to any
number of subsets of observations. It also applies to
observations taken over a period of time when the inter-
polation operator includes the evolution of the model state
to the observation time (although the observation oper-
ator will not usually then be a linear operator). This is
different from the method presented by Anderson and
Moore (1979, pp. 142–146) and used by various people
including Houtekamer and Mitchell (2001), in which the
background error covariance is updated between batches
of observations.

In order to include time dependence in the analysis
without having to minimize the full 4D-Var penalty
function, it would be possible to evolve the values
and locations of the observations to the analysis time
(although in practice the locations of the observations
are not evolved). This idea can be expressed in the form
of a penalty function,

J (x) = (
x − xf)TB−1(x − xf)+∑

i

(
gk,i(yi )−hk,i(x)

)TR̃−1
i

(
gk,i(yi )−hk,i(x)

)
, (8)

where gk,i represents the observations made at time ti
whose values and locations have been evolved to the
analysis time tk , hk,i represents the interpolation of the
model state to these evolved locations, and

R̃i = (
gk,i(yi ) − hk,i(x)

)(
gk,i(yi ) − hk,i(x)

)T
(9)

is the expected error covariance in the evolved obser-
vations at the analysis time (the overbar denoting the
expectation operator).

The penalty function given in Equation (8) is not of
much practical use as it stands, because it would be
difficult to evolve the observations forward or backward
to the analysis time sufficiently accurately, particularly
if the observations are of active tracers. Moreover, the
error associated with the evolution of the observation
value and its location would be difficult to estimate. An
alternative to minimizing Equation (8), which also makes
use of the idea for sequentially updating analyses with
new observations, is to derive a filter from Equation (8)
and use the model M to evolve forward the best estimate
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of the state while evolving the expected error covariances
of previously used observations. This can be written as

xf
k = M(xa

k−1), (10)

and
xa

k = xf
k + BH̃

T
(

H̃BH̃
T + R̃

)−1
�ỹ, (11)

where

�ỹ =




gk,k−N(yk−N) − hk,k−N(xf
k)

gk,k−N+1(yk−N+1) − hk,k−N+1(xf
k)

...

yk − hk,k(xf
k)


 ,

R̃ =




R̃k−N 0 · · · 0

0 R̃k−N+1
. . .

...
...

. . .
. . . 0

0 · · · 0 Rk


 ,

H̃ =




Hk,k−N

Hk,k−N+1
...

Hk,k


 ,

and N is the number of time periods retained in the
analysis.

In order to properly implement the above scheme,
the observation values and locations would have to be
evolved from one analysis time to the next (using the
operator gk,k−i). Furthermore, the errors associated with
each observation would have to include the errors associ-
ated with this evolution (as in Equation (9)). In the prac-
tical implementation used in FOAM, the model is used
to evolve the background field at the location where the
observation reports, and the location is not evolved. It is
assumed in the scheme that the model evolves the values
at previously assimilated observation locations with rea-
sonable accuracy, and that the distance over which obser-
vations are advected during the analysis period is gener-
ally small compared with the typical separation of obser-
vations and the scales of the background errors: that is,

gk,k−i(yk−i ) ≡ M(hk−i,k−i(xa
k−i))

≈ hk,k−i(xf
k). (12)

These assumptions generally hold in the ocean, but in
some instances they may have limitations, particularly
where there is rapid evolution of fields. Given the above
approximations, Equation (11) can be written as:

xa
k = xf

k+

BH̃
T
(

H̃BH̃
T + R̃

)−1




0
0
...

yk − hk,k(xf
k)


 , (13)

which is very similar to Equations (5) and (6).

In practice, the observation error evolution is para-
metrized using a simple time weighting that increases the
error linearly according to the time since the observation
reported. The observation error variance is increased by
a factor of 1.5 at the end of one time correlation scale.
The time correlation scales are described for each of the
observation types in Section 3.2.

Giving the background field at previously assimilated
observation locations weight in the analysis has the effect
of updating the background error covariance without
having to explicitly change the B matrix. This method
does not rely on the forecast being very accurate at
the locations of previously assimilated data: the error
evolution at these locations is taken into account by
increasing the observation error variance as a function
of the time since the observation reported.

2.3. Overview of the analysis algorithm

The assimilation scheme used in FOAM can be summa-
rized as the following sequence of steps:

1. Identify the observations that have previously been
used, and set their observational increments to zero.
This will result in an innovation vector such as that
given in Equation (13).

2. Update the observational error covariance using a time
weighting that increases the error linearly according
to the time since the observation reported, in order
to approximate the changes in the errors given in
Equation (9).

3. Calculate a new analysis using both new and pre-
viously used observations, using the AC scheme
described by Equations (2) and (3).

4. Integrate the model forward to the next analysis
time, incorporating the analysis increments during
that period, using incremental analysis updates, as
described in Section 3.4.

3. Practical implementation

3.1. Error covariances

The analysis equations (2) and (3) require the a priori
specification of the error covariances for the model fore-
cast and observations. The observation error covariance
matrix R contains estimates both of the errors in the mea-
surements and of the errors of representativity, which are
due to processes not represented by the model. The rep-
resentativity errors can often dominate the measurement
errors, and vary depending on the model resolution. In the
FOAM system, the observation error covariance matrix
is currently assumed to be diagonal, i.e. observations are
uncorrelated with each other. This approximation is rea-
sonable for some observation types, though not perhaps
for satellite data such as along-track altimeter data (or
some in situ data types).

The specification of the model forecast error covari-
ance matrix is crucial to the effectiveness of any data-
assimilation scheme, as it determines how the observation
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increments are spread onto the model field. The size of
the B matrix is of the order of 107 × 107 (for the 1

3
° North

Atlantic and Arctic FOAM configuration), and is there-
fore too large to be specified completely. Even if matrices
of this size could be stored, the information required to
specify it accurately is not available. In the FOAM sys-
tem, the background error covariance matrix is approxi-
mated by specifying the variances and approximating the
off-diagonal elements using a particular functional form
(described later in this section).

The model forecast is likely to contain errors on many
different horizontal and vertical scales, and it is important
to use knowledge about the dynamics of the ocean to
specify the type of function used to represent these
scales. The number of different correlation scales that
are to be extracted from the data depends on the type
of application. In short-range ocean forecasting, such as
in the FOAM system, it is thought that there are two
main sources of model forecast error. The first arises
from errors in the forcing of the model by atmospheric
fields such as the wind, heat or freshwater forcing, or
in the response of the model to such large-scale forcing.
Errors in the wind and heat forcing are likely to occur
on horizontal scales similar to those for synoptic weather
systems in midlatitudes (of the order of a few hundred
kilometres), with fairly small correlation with errors in
the deep ocean. Errors in the freshwater fluxes applied
to the ocean model may have smaller temporal and
horizontal scales, as they will mainly affect errors in
the mixed layer. These types of errors are expected to
be small compared with those for the large-scale wind
forcing, and so are ignored here. Errors that occur on
scales similar to those of atmospheric synoptic-scale
systems are called ‘synoptic scale’ errors.

The second source of forecast error arises from errors
in the internal dynamics of the model. These internal
errors are likely to be associated with the baroclinic
modes of the ocean, and hence consist of several hor-
izontal and vertical scales. At present, the resolution in
FOAM is such that many of the higher baroclinic modes
are not resolved, and so these are included among the
errors of representativity. The first baroclinic mode is
likely to have horizontal errors on scales of a few tens of
kilometres, with large vertical scales, and is represented
in the background error covariance. These types of errors
are termed ‘mesoscale’ errors.

The functional form for the off-diagonal elements of
B is specified to be the combination of two SOAR
functions, each with an associated variance and length
scale:

f (r) = Vsyn

(
1 + r

Lsyn
exp

(
− r

Lsyn

))
+

+ Vmes

(
1 + r

Lmes
exp

(
− r

Lmes

))
, (14)

where V is the variance, r is the separation distance,
and L is the length scale; subscript ‘syn’ indicates

the synoptic-scale component and subscript ‘mes’ the
mesoscale component.

There are various methods in the literature for esti-
mating the error covariance matrices. The method of
Hollingsworth and Lönnberg (1986) can be used to esti-
mate both the forecast and the observation error covari-
ances. Here, pairs of observation-minus-model-forecast
values are used to form the error statistics. This method
has been used to estimate the error covariances for FOAM
by Martin et al. (2002). The forecast values were taken
from a run of the system in which data were assimilated
using previous estimates of the error covariances. This
work provided a set of spatially inhomogeneous obser-
vation and model forecast error variances and correlation
scales for each observation type. An example of the func-
tional fit to the data is given in Figure 1(a) for sea surface
height (SSH) data at a location in the Gulf Stream for
the 1

3
°

North Atlantic and Arctic FOAM configuration.
The two scales can be clearly seen. Similar calcula-
tions were performed throughout the model domain. The
field of spatially-varying mesoscale variances is shown
in Figure 1(b). The areas of high variance correspond
to areas of high mesoscale variability, such as the Gulf
Stream, although there are also areas of high variance
on the northwestern European shelf and on Hudson Bay,
where tides become important (tides are not included in
the model and are difficult to remove from the data).

The part of the background error covariance matrix
that determines the vertical correlations is also required
by the analysis. These correlations are also split into two
components, associated with the mesoscale and synoptic-
scale errors, and are estimated using the data described
in the preceding paragraph. For the temperature- and
salinity-profile data, vertical correlation length scales of
200 m for the mesoscale component and 100 m for the
synoptic-scale component are applied everywhere.

3.2. Observation-group-specific aspects

The result from Equations (4)–(7) can be applied within
an analysis step in order to split the analysis into sepa-
rate observation groups. Within FOAM, the observation
groups that are assimilated are sea surface temperature
(SST), SSH, temperature profile, salinity profile, and sea-
ice data. The iterations described in Equation (2) are
performed over each observation group, but also over all
observation groups, so that the entire analysis procedure
is performed a number of times. In this way, the infor-
mation provided from the analysis of temperature and
salinity data will feed back into the analysis of SSH, and
vice versa. Provided the observations are consistent with
each other and are assimilated in a consistent manner,
this procedure will converge over observation types. If
there are inconsistencies in the data, iterating over obser-
vation types should mean that no one type is given more
weight than any other.

Each group also has time correlation scales associated
with it. These are specified to be 5 days for the surface
observations (i.e. SST, SSH and sea ice), and 10 days
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Figure 1. (a) Example of the functional fit to SSH covariance data
using two SOAR functions at (30 °W, 40 °N). Shown are the covariance
data (diamonds), the mesoscale errors (dashed line – length scale
is 37.13 km), the synoptic-scale errors (dotted line – length scale is
561.63 km), and the total errors (solid line). (b) Spatially-varying
SSH mesoscale forecast error variances for the 1

3
° North Atlantic and

Arctic FOAM configuration. The solid lines have contour intervals of
200 cm2, the dashed line marks the 50 cm2 contour, and the dotted

line marks the 10 cm2 contour.

for the temperature- and salinity-profile data. These
time correlations are included by increasing the errors
associated with each observation in accordance with
these time-scales, as described at the end of Section 2.2.
Aspects of the data assimilation that are specific to each
observation group are now described.

3.2.1. SST data

In situ SST measurements from moored and drifting
buoys, ships and other platforms are assimilated into the
FOAM system. These data are available in real time over
the Global Telecommunications System (GTS). An exam-
ple of the data coverage in the North Atlantic for one day
is given in Figure 2. This shows that SST is fairly well
observed by in situ measurements, although these data
alone do not generally resolve mesoscale features. Satel-
lite SST data are also assimilated in FOAM. Currently the
satellite data used are from a 2.5°-resolution Advanced
Very High Resolution Radiometer (AVHRR) product pro-
duced by the National Environmental Satellite, Data and
Information Service. The type of satellite data used is

currently being upgraded to include high-resolution mea-
surements produced by the GODAE high-resolution SST
pilot project (GHRSST-PP) (Donlon et al., 2005). This
will provide data that will resolve mesoscale ocean fea-
tures and will significantly improve the SST analyses
produced by FOAM.

In order to assimilate the SST data in real time, an auto-
matic quality-control procedure is required. This includes
a Bayesian procedure described by Ingleby and Lorenc
(1993) for checking the compatibility of the observa-
tions with the current model forecast, given a priori error
statistics for the observations and model fields. In order
to achieve consistency between the quality-control and
data-assimilation steps, the error covariance information
described in Section 3.1 is used for the description of
the probability density functions of the observations and
model fields in the quality control.

The SST analysis in FOAM is calculated by comparing
the temperature in the top model level (0–10 m depth)
with the observations. The in situ observations are made
at various depths, and so can include diurnal effects
that are not reproduced by the model. Satellite SST data
also contain significant biases compared to in situ data.
These biases are analysed and removed using a procedure
described in Section 3.5. Once this bias correction has
been performed, a two-dimensional analysis of SST is
produced using the method described in Section 2.

The SST analysis produces a two-dimensional field of
temperature increments. These are applied throughout the
mixed layer of the ocean as diagnosed by the mixed-layer
model in FOAM. The depth to which these increments
are applied is limited to 660 m in order to prevent incre-
ments from being applied at depth in regions of deep
convection where the vertical correlations are likely to
be less reliable.

3.2.2. Temperature- and salinity-profile data

All in situ temperature- and salinity-profile data that
are available in near-real time on GTS are assimilated
into FOAM. These include the large amount of Argo
temperature- and salinity-profiling float data (Argo Sci-
ence Team, 1998), which are now the dominant source

60N
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e
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90W 60W 30W 0
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0

Figure 2. In situ SST data coverage for the North Atlantic for 20 March
2006. There are 9113 observations.
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of in situ profile data. Other conductivity–temperature–
depth measurements are also assimilated, together with
the moored buoy data from the TAO/TRITON and
PIRATA arrays, and temperature data from expendable
bathythermographs (XBTs). Figure 3(a) shows the profile
data reporting temperature to a depth of at least 1000 m
for a 10-day period in March 2006. This shows the wide
coverage now available thanks to the Argo array. Figure
3(b) shows the temperature profile data reported during
one day, 20 March 2006; this gives an idea of the amount
of new information available at each assimilation time.
Similar coverage of salinity profile data reporting to at
least 1000 m is also available (not shown).

A comprehensive automatic quality-control system for
profile data is used in FOAM, as described by Ingleby
and Huddleston (2007). This includes various checks on
the data, including track checks, spike checks, stability
checks, duplicate checks, background checks (as with
SST), and buddy checks. This system is crucial for the
operational FOAM system, particularly for checking the
Argo salinity data, which can be prone to sensor drift.
A balance has to be struck between rejecting good data
and including bad data. In an operational setting, the
requirement of a robust system means that this balance
is weighted so that the scheme may reject some good
data in order to ensure that no bad data are allowed to
be assimilated. This is important, as once a bad platform
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Figure 3. In situ temperature-profile data coverage for the North
Atlantic at 1000 m depth (a) between 15 and 24 March 2006 (341

observations) and (b) on 20 March 2006 (36 observations).

has been assimilated it is then more likely to be accepted
next time it reports, and can have a significant impact on
the model fields.

A three-dimensional analysis is produced separately
for the temperature-profile and salinity-profile data. In
each case, the analysis is obtained by assuming that the
solution can be separated into vertical and horizontal
components, as described in Section 2.1. Within each
iteration of the analysis described in Equation (2), a
vertical analysis is performed at observation locations,
prior to a horizontal analysis at each vertical level. The
vertical correlations take the same form as the horizontal
correlations described in Equation (14). Both the vertical
and the horizontal analyses use the error covariance
information described by Martin et al. (2002).

3.2.3. Altimeter SSH data

The FOAM system assimilates the along-track sea-
level-anomaly (SLA) altimeter data processed in near-
real time by Collecte Localisation Satellites (CLS)
(http://www.cls.fr/). These currently consist of data from
the Jason-1, Envisat and Geosat Follow-On instruments.
An example of the data coverage for a 5-day period in
March 2006 is given in Figure 4(a), and an example of
the new data available for one assimilation period on 20
March 2006 is shown in Figure 4(b). The data are quality-
controlled during the CLS processing, but an additional
background check is performed before assimilation into
FOAM, using a method similar to that used for the SST
data.

The SLA observations are provided as anomalies
relative to a time-mean field. This is necessary because
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Figure 4. Altimeter SSH data coverage for the region covered by the
North Atlantic 1

9
°-resolution FOAM configuration (a) between 18 and

22 March 2006 (15 731 observations) and (b) for 20 March 2006 (2975
observations).
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the mean height of the ocean (relative to a reference
ellipsoid), which includes the Geoid (a fixed gravity-
equipotential surface) and the mean dynamic topography
(MDT), is not known accurately enough relative to
the variability in the dynamic topography (typically of
the order of 10 cm), mainly because of insufficient
knowledge of the Geoid. The time mean is removed from
the SSH observations; this removes the Geoid, but also
removes the MDT. A reference MDT therefore needs
to be added to allow us to compare the observations to
the model fields. Various options for a reference MDT
are available. These include the model’s mean SSH
from a hindcast run, a mean derived from hydrographic
data, a mean derived from geodetic measurements (for
example, from GRACE and GOCE), information from
the altimeter data themselves, or any combination of
these. The MDT currently used in the North Atlantic
FOAM configurations is described in detail in (Hines,
2001). It is based on the dataset of Singh and Kelly (1997)
in the northeastern Atlantic, which is merged with data
from a long integration of the FOAM system.

The altimeter data are assimilated using a two-stage
approach. First, a horizontal analysis is performed, using
the method described in Section 2. This results in a two-
dimensional field of SSH increments, which is split into
a part due to errors in the mesoscale ocean dynamics
and a part due to larger-scale errors in the model
(for instance due to steric effects not captured by the
model), calculated as part of the analysis using the error
variance information described in Section 3.1. These
two components of the increments are used differently.
The part due to mesoscale errors is projected onto the
subsurface temperature and salinity using a modified
version of the scheme introduced by Cooper and Haines
(1996), which is described in more detail in the next
paragraph. The part of the SSH increments that is due to
the larger-scale errors could then be used to update the
barotropic stream function (though at present this part is
discarded). The global 1°-resolution FOAM configuration
does not resolve mesoscale dynamics, so the altimeter
data are not assimilated in this configuration. The higher-
resolution regional FOAM configurations either permit or
resolve the ocean eddy field, and so the altimeter data are
assimilated into these models.

The scheme used to project the mesoscale part of the
SSH signal onto the subsurface density field is based on
that of Cooper and Haines (1996). The model’s density
profile is raised or lowered in order to produce the
equivalent change in hydrostatic surface height while
preserving the bottom pressure. Observation and model
density profiles have been used by Martin et al. (2002)
to calculate the errors in the vertical placement of the
density profile from a hindcast run of the FOAM system.
These show that most of the errors occur in the region of
the thermocline, with little error in the deep ocean or near
the surface mixed layer. For this reason, the scheme of
Cooper and Haines (1996) has been modified by applying
a change to the displacement as a function of depth.
This function produces a displacement that is maximal

in the thermocline, decays below the thermocline depth
to zero at the bottom of the model, and decays above
the thermocline depth to zero at the base of the mixed
layer. The surface-height increment produced using this
method is the same as that produced using the Cooper
and Haines (1996) method, but the vertical profile of the
density increments is different.

The scheme just described (and the unmodified scheme
of Cooper and Haines (1996)) can produce unrealistic dis-
placements to the density profile when the stratification
of the model’s density profile is weak. In the absence of
knowledge about how the SSH error is correlated with
errors in the subsurface fields in these regions, a weight-
ing factor is applied to the displacements: this weighting
is equal to one where the top-to-bottom temperature dif-
ference is greater than 10 °C and decreases linearly to zero
when this temperature difference is less than 5 °C. There
are also problems with assimilating the altimeter SSH
data in shallow water, mainly due to the contamination
of the observed signal by tides, which are not represented
by the model. For this reason, another weighting factor
is applied to the vertical displacements: this weighting is
equal to one for depths greater than 1000 m and decreases
linearly to zero when the depth is less than 100 m.

3.2.4. Sea-ice data

The sea-ice analysis currently used in FOAM is a separate
scheme from that used for the other observation types.
This scheme nudges the FOAM sea-ice concentration
fields towards a daily sea-ice analysis produced by the
Canadian Meteorological Centre, with a time-scale of
one day. We plan to upgrade the scheme to assimilate
the satellite sea-ice concentration data produced by the
Special Sensor Microwave/Imager (SSM/I) instrument,
using the same method as for the other observation types.
Details of the new scheme for assimilating sea-ice data
are described by Stark et al. (2005).

3.3. Multivariate aspects

The assimilation procedure described above (except for
the sea-ice analysis) produces three-dimensional incre-
ments to the temperature and salinity fields at the analysis
time. In order to produce changes to the other prog-
nostic model variables, multivariate balance relationships
are used. This is done because the ocean is generally in
geostrophic balance (apart from the Ekman component)
and the model should not be pushed out of balance by
the assimilation as this may cause undesirable or unphys-
ical responses in the model. Increments to the baroclinic
velocities are obtained using the geostrophic relationship,
except within a few degrees of the Equator, where this
relationship does not apply. The baroclinic velocity incre-
ments are ramped to zero within 5° of the Equator. No
balancing increments are made to the barotropic stream
function, and there is no special treatment of the surface
wind-driven velocities.
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3.4. Application of the increments

The result of the assimilation is a set of three-dimensional
updates to the model prognostic fields. Direct insertion of
these analysis increments can cause shocks to the model,
and may generate within it spurious and undesirable
gravity waves. To reduce the shock to the model, the
assimilation increments are applied slowly during the
next day of the forecast, using a method known as
‘incremental analysis updates’ (Bloom et al., 1996). This
scheme applies the increments as a constant forcing
to the model equations between analysis times. The
temperature, salinity and baroclinic-velocity increments
are applied in this manner.

3.5. Bias-correction issues

The assimilation scheme as described in Section 2
assumes that there are no systematic errors in either the
model or the observations. In practice, this assumption
is not valid, and the systematic errors in both the model
and observations can cause significant problems for the
assimilation scheme. Dee and Da Silva (1998) discuss
the general theory for dealing with systematic errors in
the data-assimilation framework.

Observational biases can be dealt with if they are
known a priori. For instance, the low-resolution AVHRR
satellite SST data described in Section 3.2 are known to
contain systematic errors. In this case a large-scale two-
dimensional analysis is performed on the satellite data
and on the in situ data separately. The difference between
these two analyses is then taken to be the bias (the in situ
data are assumed to be unbiased), and the satellite data
are adjusted accordingly. More sophisticated techniques
are being developed for estimating the biases in the high-
resolution SST data provided by GHRSST-PP, so that
data from different satellite sensors (which measure the
temperature at different depths) can be assimilated in a
consistent manner.

Other observation types also contain biases. For
instance, the salinity data from some Argo floats are
known to have drifts and offsets, which are corrected in
delayed-mode processing. Some XBTs are also thought
to have small warm biases. These errors are not currently
estimated or corrected as part of the real-time operational
FOAM system, although data with significant errors will
be rejected by the quality control.

The raw altimeter SLA data also contain biases,
although most of these are removed during the processing
by CLS. However, the mean dynamic topography used to
enable the assimilation of these data can cause systematic
errors in the observations (SLA and MDT). A method
that calculates and removes these biases online has
been implemented in the development version of the
FOAM assimilation system by Drecourt et al. (2006).
This method assumes the model sea level to be unbiased
and estimates the bias in the MDT using a procedure
that behaves similarly to a running mean over the sea-
level residuals. This procedure is efficient at improving
the sea-level forecast.

Systematic errors in the model can cause significant
problems for the assimilation scheme. An example of
this is in the tropical oceans, where the main large-scale
dynamical balance is between the surface wind stress
and the subsurface pressure gradients. When assimilat-
ing temperature, salinity and altimeter data, the subsur-
face pressure gradients are altered to be closer to the
true state, but systematic errors in the wind forcing and
the way in which it is input into the model can disrupt
this balance (Huddleston et al., 2004). This causes spu-
rious circulation cells to be set off by the assimilation;
these tend to oppose the increments being put in by the
assimilation. The assimilation of data in the presence of
systematic model error therefore has a detrimental impact
on the model dynamics. Bell et al. (2004) describe how
FOAM attempts to overcome these problems by includ-
ing a correction to the pressure-gradient term, calculated
using information from the model and observation dif-
ferences. An alternative, and complementary, method to
alleviate these problems has been proposed by Burgers
et al. (2002): in this method, an extended ‘geostrophic’
relationship is used to make balancing east–west velocity
increments. This is not currently implemented in FOAM.

In the extratropics there are other systematic errors
in the model. For instance, many models are unable to
reproduce the true separation point of the Gulf Stream
from the east coast of North America, or the northward
turn of the Gulf Stream extension. The assimilation of
data can correct for these errors during an analysis, but
the model will soon drift when producing a forecast.
The semi-prognostic method introduced by Greatbatch
et al. (2004), which uses ideas similar to the pressure-
correction method of Bell et al. (2004), has been shown
to correct such errors, and could be used to deal with
problems of this nature.

4. Demonstration of the impact of data assimilation

The performance of the data-assimilation scheme is
assessed using two experimental frameworks. The first
set of experiments is based on an identical-twin setting,
in which the impact of the altimeter data assimilation
scheme is assessed. The second set of experiments
assimilates real data over a 5-year period, and the results
are shown for the 1

9
°

configuration.

4.1. Identical-twin experiments

In order to show the impact of the assimilation of altime-
ter data in a setting in which the ‘truth’ is known,
identical-twin experiments have been performed. These
involve running a two-year spin-up of the FOAM system
(1° global model, 1

3
°

North Atlantic and Arctic model and
1
9

°
North Atlantic model) starting from rest, with climato-

logical temperature and salinity fields taken from (Levitus
et al., 1998). A one-way nesting is used, in which the
temperature, salinity, baroclinic velocity, stream func-
tion and sea-ice fields of the smaller domain are relaxed
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towards those of the outer domain near the boundary,
using the flow relaxation scheme (Martinsen and Enger-
dahl, 1987). The models are forced by 6-hourly surface
fields from the Met Office Numerical Weather Prediction
(NWP) system between May 2002 and June 2004. At
the end of this spin-up period, a year-long integration is
run, which assimilates the real temperature and salinity
data into each of the model configurations, as described
in Section 3.2. The fields from this run are taken to be
the ‘true’ state of the ocean. The conditions at the end
of this year-long run are then used as the initial state for
another run of the same period in which the temperature
and salinity data are assimilated. The fields from this run
are taken to be the ‘control’. No SST observations are
assimilated in any of these integrations. An assimilative
model is used as a control in these experiments in order
to observe the impact of the altimeter assimilation in the
presence of temperature and salinity assimilation, rather
than in isolation.

Simulated observations of SSH are created by sub-
sampling the fields from the ‘true’ run according to the
locations of the real along-track altimeter data available at
each time. Noise is added to these observations, having a
normal distribution with a standard deviation of 4 cm. An
‘assimilation’ experiment is then run, using the 1

9
°

North
Atlantic model in which the simulated SSH observations
are assimilated using the scheme described in Section 3.2.

Figure 5(a) shows root mean square (RMS) error statis-
tics, calculated from the difference between the model

field and the ‘true’ field at every model grid point, of daily
mean SSH during the year of the identical-twin experi-
ments. ‘Daily mean’ here refers to the 24-hour period
over which the assimilation increments are nudged into
the model, starting from the analysis time. The dashed
line shows the errors in the ‘control’ run compared to the
‘true’ run; this shows a steady reduction in the errors
in SSH when assimilating only the temperature- and
salinity-profile data. However, the RMS errors at the end
of the ‘control’ integration are still about 9 cm, indicating
that the system is very sensitive to the initial condi-
tions. When assimilating the altimeter SSH data, the RMS
errors are significantly reduced, to about 6 cm averaged
over the whole North Atlantic, as shown by the solid line.
The same errors calculated at the along-track observation
locations and averaged over the year of the integration
are approximately 12 cm for the ‘control’ integration and
7 cm for the ‘assimilation’ integration. These assimila-
tion errors are higher than the observation-error standard
deviations of 4 cm, indicating that the error variances
specified in the assimilation scheme are not optimal.

The evolution of errors during forecasts has been
estimated by running one 30-day forecast for each month
of the year (July 2004 to June 2005). Figure 5(b) shows
the average errors (daily mean differences from the truth)
for these forecasts for the ‘control’ and ‘assimilation’
integrations, together with the errors if the analysis is
persisted into the forecast period. The small number of
forecasts means that these errors should be treated with
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Figure 5. RMS errors in SSH compared to the ‘true’ run at all model grid points, for the ‘control’ integration (dashed lines) and SSH-assimilation
integration (solid lines), (a) for the daily mean fields, and (b) as a function of forecast day, with persistence (dotted line) also shown.
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caution, but they do give an idea of the forecast errors
in the system. The forecast runs from the ‘assimilation’
integration have smaller errors than those from the
‘control’ integration throughout the 30 days, showing that
the analysis of SSH is providing a good initialization of
the model. The errors from the ‘assimilation’ forecasts
are very similar to persistence for the first 7 days of the
forecast, but the model does provide an improved forecast
in the subsequent 23 days.

The impact of the assimilation of SSH data on the
subsurface temperature and salinity fields is illustrated in
Figure 6(a) and (b) respectively. These show the RMS
error statistics, calculated from a model daily average
after the analysis compared to the ‘truth’ at every model
grid point. The SSH assimilation significantly reduces the
errors in temperature in the top 1000 m, and the errors in
salinity are reduced in the top few hundred metres. Below
these depths, the errors are increased by the assimilation
of SSH data.

An example of the impact of the assimilation system on
non-observed variables is given in Figure 7, which shows
the annual mean errors in the surface velocity magnitude
for the ‘control’ and ‘assimilation’ integrations. It is clear
from this figure that the errors in surface velocities are
reduced by the assimilation of altimeter data, although
significant errors remain. The annual mean spatially-
averaged absolute-surface-velocity error is 4.2 cm s−1

for the ‘control’ integration and 3.0 cm s−1 for the
‘assimilation’ integration.

The identical-twin experiments just described are use-
ful for assessing the potential of the scheme. The results
show that the altimeter data coverage has the most sig-
nificant ability to resolve the mesoscale structure of the
ocean, and brings complementary information about the
temperature and salinity structure within the top few hun-
dred metres. There are, however, many errors in the

real system that are not present in this idealized setting.
These include random and systematic errors in the MDT
used for the altimeter assimilation, inconsistency between
observation types, errors in the model, and many others.
We next describe some experiments in a real-world set-
ting in which all of these errors are likely to be present.

4.2. Hindcast integrations

To show the impact of the assimilation of data in a
realistic setting, a set of integrations has been performed
for the period January 2001 to July 2005. The 1° global
model, the 1

3
°

North Atlantic and Arctic model and

the 1
9

°
North Atlantic model have all been run for this

period, starting from operational FOAM analysis fields
and forced by 6-hourly surface fluxes from the Met Office
NWP system. These integrations have been run with no
data assimilation (CONTROL), with assimilation of all in
situ temperature and salinity data (ALLTS), and as a
repeat of the ALLTS run but with the Argo data withheld
(NOARGO).

The impact of the Argo data on the FOAM system is
illustrated in Figure 8, which shows RMS errors of tem-
perature and salinity analyses from the 1

9
°

North Atlantic
model compared to observations that have not yet been
assimilated but are valid within 24 hours of the analy-
sis. That is, the analysis fields at T0 are compared to
data profiles that are valid between T0 and T 0 + 24. The
ALLTS run (solid line) has much less error in temperature
over all of the top 1000 m than the NOARGO integration
(dotted line) and the CONTROL integration (dashed line).
The salinity errors are most significantly reduced by the
Argo data assimilation in the top 600 m. The salinity
errors with the NOARGO integration are marginally worse
than with no data assimilated in the top 400 m. This
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Figure 6. RMS errors in (a) temperature and (b) salinity, compared to the ‘true’ run, for the ‘control’ integration (dashed lines) and the
SSH-assimilation integration (solid lines). The errors are shown as a function of depth, and have been averaged over the year of the integrations.
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between January 2001 and July 2005 and over the model domain. Results are shown for the ALLTS run (solid lines), the NOARGO run (dotted

lines) and the CONTROL run (dashed lines).

is probably because assimilating only temperature data
can disrupt the density structure in the model, so that,
although temperature is improved, the salinity fields are
slightly worsened, with no independent salinity data to
constrain them. This result indicates the importance of
methods such as that of (Troccoli and Haines, 1999), in
which balance relationships are used to update the salinity
fields when assimilating only temperature data. Overall,
these statistics show both the importance of the Argo data
and the beneficial impact of the data assimilation on the
model fields.

The differences between the average temperature at
1000 m depth from each of the model runs and the
(Levitus et al., 1998) climatology are shown in Figure
9. When no data are assimilated, the model fields have
significant biases at this depth. The data assimilation
corrects for most of the drift in the temperature, as
shown in Figure 9(c), although some differences with
the climatology remain. An area of significant bias is
the Gulf of Mexico; this is probably because of the lack

of Argo data in this region. There are also significant
differences in the Gulf Stream region, although these are
likely to be due to the climatology not being able to
resolve the temperature gradients in this region. Some
of these differences with the climatology could also be
due to a real interannual signal that is contained in the
observations but not in the climatology. Results from
the NOARGO run show that the Argo data are crucial for
obtaining accurate temperature analyses at this depth.

The average analysed temperature increments are
shown in Figure 10 for the NOARGO and ALLTS inte-
grations. The magnitude of these increments is largest
for the ALLTS run; this highlights the importance of the
Argo data for capturing the errors in the model. The field
shown in Figure 10(b) gives an indication of the aver-
age model drift over each day in the observed regions. It
indicates a significant warm bias in the model to the west
of the North Atlantic (the increments are negative, indi-
cating that the assimilation is acting to cool the model),
and a cool bias to the east. The biases in both of these
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Figure 9. Difference between the (Levitus et al., 1998) climatology and
the temperature at 1000 m depth, averaged between January 2001 and
July 2005, from (a) the CONTROL run, (b) the NOARGO run, and (c)
the ALLTS run. The contour interval is 0.3 °C; negative contours are

dashed, and the thick line is the zero contour.

regions are thought to be due to deficiencies in the ver-
tical advection scheme used in these integrations. The
warm bias to the west is due to the thermocline being
diffused by the vertical advection scheme, and the cool
bias to the east is due to the vertical gradients caused by
outflow water from the Mediterranean Sea being diffused.

The vertical advection scheme will be upgraded in future
versions of FOAM. An increase in the number of ver-
tical levels would also help to alleviate some of these
problems.

5. Summary and future plans

The current status of the FOAM data assimilation system
has been described. The theoretical foundation of the
scheme is an updated version of an optimal-interpolation
scheme in which the time evolution of the observational
information is taken into account. Details of the way
in which this scheme is implemented have been given
for each of the observation types assimilated: SST, SSH,
temperature and salinity profiles, and sea ice. The basic
scheme assumes that there are no systematic errors in the
modelling and observational systems. This is not true in
practice, so the way in which these types of errors are
accounted for has also been described.

The experiments that have been performed demon-
strate the impact of the data-assimilation scheme on the
accuracy of the FOAM analyses. The assimilation of
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Figure 10. Average temperature increments at 1000 m depth from (a)
the NOARGO run and (b) the ALLTS run. The contour interval is
0.005 °C day−1; negative contours are dashed, and the thick line is

the zero contour.
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altimeter data is shown to improve both the surface height
and the subsurface temperature and salinity fields in an
identical-twin setting. Real-world hindcast experiments
have shown the impact of Argo data when it is assimi-
lated into FOAM.

Various upgrades to the data-assimilation system are
envisaged, including updating the error covariance esti-
mates. A scheme such as the NMC method (Parrish and
Derber, 1992), or ensemble methods (Kucukkaraca and
Fisher, 2006), will be used to provide new estimates
of these, although they will be compared to the esti-
mates currently used to ensure consistency with these
‘real-world’ estimates. It would be possible to update the
filter to include some anisotropy in the error covariances,
which should produce more realistic analyses.

The assimilation of new data types is also being inves-
tigated. These include the high-resolution SST data that
are available through GHRSST-PP, and SSM/I sea-ice-
concentration data. Other future possibilities for assimi-
lation include sea surface salinity from missions such as
SMOS and Aquarius, and the velocity information avail-
able from drifters. Investigations are already underway
into the assimilation of ocean-colour satellite data into
a coupled physical–bio-geochemical model, using the
FOAM system together with the HadOCC model (Palmer
and Totterdell, 2001); this will be implemented in the
operational system.

It has been shown by Haines et al. (2006) that a change
of variable can enable the use of longer correlation scales,
so that an individual observation can influence a much
larger area. It would therefore be possible to obtain
more information from the observations by changing
the variables that are used in the assimilation. For
instance, a scheme in which the control variables are
density and ‘spiciness’ is currently under development.
A scheme that uses the water mass characteristics of the
model background field to update the salinity based on
the temperature updates, as described by Troccoli and
Haines (1999), is also currently under investigation in
the development version of the assimilation scheme.

The model used in the FOAM system is currently
being transitioned to use the NEMO model (http://
www.lodyc.jussieu.fr/NEMO). The current FOAM data-
assimilation system is being tested within this new mod-
elling framework. This framework will also provide the
opportunity to investigate the use of more sophisticated
data-assimilation schemes that take into account the evo-
lution of the background error covariance matrix. Such
a scheme may be particularly useful when assimilating
data in shallower waters, where the temporal and spatial
scales of the water are much smaller than in the deep
ocean.
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A Appendix: Subsets of observations

The last term in Equation (6) will be manipulated using
the formula:

y2,k − h2(xa
1,k) = y2,k − h2(xf

k + xa
1,k − xf

k)

= y2,k − h2(xf
k) −

− H2K1
(
y1,k − h1(xf

k)
)
, (A1)

where
K1 = BHT

1

(
H1BHT

1 + R1
)−1

,

Equation (5) has been used to derive the second equality,
and the observation operator has been assumed to be
linear. Adding Equations (5) and (6) and using Equation
(A1), we obtain:

xa
2,k − xf

k = K
(

0
y2,k − h2(xf

k)

)
+

+
(

K1 − K
(

0
H2

)
K1

)(
y1,k − h1(xf

k)

)
, (A2)

where
K = BHT (

HBHT + R
)−1

.

In order to combine terms, we reorganize the first element
in the second term on the right-hand side of Equation
(A2) as follows:

K1
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y1,k − h1(xf

k)
)

= BHT
1

(
H1BHT

1 + R1
)−1(y1,k − h1(xf

k)
)

= B ( HT
1 HT
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1 + R1
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0
0 0
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·

·
(
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k)

0

)

= BHT(
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)−1(HBHT + R
)·

·
( (

H1BHT
1 + R1

)−1
0

0 0

) (
y1,k − h1(xf

k)

0

)

= BHT(
HBHT + R

)−1·

·
(

I

H2BHT
1

(
H1BHT

1 + R1
)−1

) (
y1,k − h1(xf

k)
)

= K
(

I

H2K1

) (
y1,k − h1(xf

k)
)
. (A3)

Note that the penultimate step in the above manipu-
lations uses the fact that the errors in each observation
batch are assumed to be uncorrelated with each other.
Using Equation (A3), we can simplify Equation (A2) to:

xa
2,k = xf

k + K
(

0
y2,k − h2(xf

k)

)
+

+ K
(

y1,k − h1(xf
k)

0

)

= xf
k + K

(
yk − h(xf

k)
)
. (A4)
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Comparing Equation (A4) with Equation (1), one sees
that xa

2,k ≡ xa
k . By induction, this result can be applied to

an arbitrary number of expanding subsets for any set of
observations.
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