
Combined constraints on global ocean primary production
using observations and models

Erik T. Buitenhuis,1 Taketo Hashioka,1,2,3 and Corinne Le Quéré1

Received 27 September 2012; revised 30 May 2013; accepted 28 July 2013; published 30 August 2013.

[1] Primary production is at the base of the marine food web and plays a central role for
global biogeochemical cycles. Yet global ocean primary production is known to only a
factor of ~2, with previous estimates ranging from 38 to 65 PgC yr�1 and no formal
uncertainty analysis. Here, we present an improved global ocean biogeochemistry model
that includes a mechanistic representation of photosynthesis and a new observational
database of net primary production (NPP) in the ocean. We combine the model and
observations to constrain particulate NPP in the ocean with statistical metrics. The
PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic
representation of iron-light colimitation, which leads to a considerable improvement of the
interannual variability of surface chlorophyll. The database includes a consistent set of
50,050 measurements of 14C primary production. The model best reproduces observations
when global NPP is 58 ± 7 PgC yr�1, with a most probable value of 56 PgC yr�1. The most
probable value is robust to the model used. The uncertainty represents 95% confidence
intervals. It considers all random errors in the model and observations, but not potential
biases in the observations. We show that tropical regions (23°S–23°N) contribute half of the
global NPP, while NPPs in the Northern and Southern Hemispheres are approximately
equal in spite of the larger ocean area in the South.
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1. Introduction

[2] Primary production forms the basis of the food web and
as such controls how much material and energy is available
for the biosphere as a whole. It also forms the entry point
of inorganic nutrients and carbon into the food web, and
therefore, primary production is the ecosystem flux that is
most directly influenced by anthropogenic changes in global
biogeochemical cycles. Primary production is of similar mag-
nitude in the land and marine biospheres, or ~100PgCyr�1

for gross production and ~50PgCyr�1 for net production
(net primary production (NPP) = gross production minus
autotrophic respiration [Prentice et al., 2001]). This is where
the similarity stops. Heterotrophic activity in the land bio-
sphere is dominated by detritivory by bacteria, while in the

marine biosphere, it is dominated by herbivory by zooplank-
ton. This leads to very different standing stocks of autotrophs:
~500PgC in land plants [Prentice et al., 2001] and ~1PgC in
marine autotrophic protists [Le Quéré et al., 2005], with an
average turnover time for autotrophs of ~10 years on land
and ~1week in the ocean.
[3] Primary production in the ocean has mostly been mea-

sured by incubating samples with 14C and measuring the
difference in uptake between light and dark incubated bottles
[Steemann Nielsen, 1952]. Interpretation of what 14C incuba-
tions measure varies, but there is evidence supporting the
conclusion that daytime 14C uptake (which is the case for
most in situ measurements) measures NPP [Marra, 2009].
Because there is no consensus on this question, we will
assume that 14C uptake measures particulate net primary pro-
duction (NPP), though this might introduce some unquantified
bias into our results.
[4] NPP is the flux that is the most relevant to global ocean

biogeochemical cycles and, therefore, the focus of this study.
Initial estimates of global NPP were made by extrapolating
in situ measurements in space and time (Figure 1). Large gaps
in the data coverage led to a considerable spread in the
estimated NPP from in situ measurements. More recently,
global NPP has been estimated using remote sensing of
surface chlorophyll [Antoine et al., 1996; Behrenfeld and
Falkowski, 1997; Mélin, 2003] or surface carbon [Behrenfeld
et al., 2005]. These satellite-based estimates all rely on as-
sumptions about the vertical distribution of NPP and the C:
Chl (or C:backscattering coefficient) ratio. The improved
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spatial and temporal coverage provided by remote sensing
data has narrowed down the range of estimated values to
46–65PgCyr�1, but a large spread remains, mainly because
of the uncertainty in the vertical distribution of NPP.
Furthermore, no formal error analysis has been done previ-
ously, no central (most likely) estimate exists, and the satel-
lite-based estimates have not ruled out the lower NPP values
determined from in situ measurements alone.
[5] Here, we combine model results and observations to

constrain global NPP and its uncertainty. We first improve
the vertical representation of NPP in the PlankTOM5
global biogeochemical model of Buitenhuis et al. [2010]
by implementing and validating the dynamic iron-light
photosynthesis formulation of Buitenhuis and Geider
[2010]. This mechanistic formulation reproduces the ef-
fects of iron and light availability on the C:Chl:Fe stoichi-
ometry of phytoplankton and the dynamical influence of
this stoichiometry on photosynthetic performance. It is
thus well suited to study the spatiotemporal (including
depth) distribution of phytoplankton carbon biomass and
their activity in a changing light-Fe environment. We use
the model and a range of perturbation experiments to cal-
culate global NPP when the model best fits the observa-
tions and estimate its uncertainty. Finally, we verify the
results using the NSI-MEM (Nitrogen, Silicon and Iron
Regulated Marine Ecosystem Model) ocean biogeochem-
istry model [Shigemitsu et al., 2012].

2. Model Description

2.1. PlankTOM5 Biogeochemical Model

[6] PlankTOM5.3 is a global ocean biogeochemical model
representing five plankton functional types (PFTs): three
phytoplankton PFTs (diatoms, coccolithophores, and mixed

phytoplankton) and two zooplankton PFTs (microzooplankton
and mesozooplankton). The model has 25 state variables,
including 10 phytoplankton components (three PFTs with
variable Fe:C, Chl:C, and Si:C ratios and fixed macronutri-
ent:C ratios), 2 zooplankton components, 6 dissolved/nutri-
ent components (dissolved inorganic carbon, alkalinity,
oxygen, nitrate (NO3), silicate (SiO3), and Fe), and 7 dead
particulate/detritus components (small and big particulate
organic carbon and iron, dissolved organic matter, and
detrital CaCO3 and SiO2). PlankTOM5.3 was developed
from PlankTOM5.2 of Buitenhuis et al. [2010] and includes
(1) the dynamical photosynthesis model of Buitenhuis and
Geider [2010], (2) the biophysical feedback through heat
absorption by chlorophyll for each phytoplankton plankton
functional type (pPFT) of Manizza [2006; see also Manizza
et al., 2008], and (3) a new parameterization of the
ballasting effect based on the observations of drag coeffi-
cient as a function of the Reynolds number from Ploug
et al. [2008]. Here, we present only these new equations.
Documentation of the other compartments can be found
at http://lgmacweb.env.uea.ac.uk/green_ocean/.
2.1.1. Dynamic Photosynthesis Model
[7] The change in phytoplankton concentration is calcu-

lated as

δPie

δt
¼ 1� dð ÞPPie PiC � wPiPi

CPi
e � Σ j gZj

PiZjPi
e (1)

in which Pi
e is the concentration of element e in phytoplank-

ton PFTs i, in which the elements e are C, Fe, or Chl (N, P,
and O occur in fixed ratios to C). d is the fraction of primary
production that is exuded as dissolved organic carbon
(DOC), PPi

e is the assimilation rate of phytoplankton (equa-
tions (2), (4), and (5)), wPi is the total loss rate (equation
(6)), and gZj

Pi is the grazing rate of zooplankton Zj on phyto-
plankton Pi [Buitenhuis et al., 2006, 2010]. The loss rates are
the same for all elements.
[8] The assimilation rates are based on the iron-light

colimitation model of Buitenhuis and Geider [2010] as fol-
lows: for carbon,

PPi
CPC max � 1� exp

�αChlθCI
PC max

� �� �
(2)

where PCmax is the maximum photosynthesis rate (equation
(3)), αChl is the constant initial slope of the PI (photosynthe-
sis-irradiance) curve, θC is the variable chlorophyll-to-carbon
ratio, and I is the light intensity (blue plus red) in mol photons
m�2 s�1. Light intensity is converted from Wm�2 to mol
photonsm�2 s�1 using a conversion factor of 3.99 for blue
light and 5.24 for red light.
[9] PlankTOM5.3 has fixed C:N ratios and variable C:

Fe ratios. Fixed ratio models typically use saturation kinet-
ics to model dependence of growth rate on external nutri-
ent concentrations, while variable ratio quota models use a
linear dependence of growth rate on internal nutrient
quota. Droop [1974] showed that the law of the minimum
can be used to calculate the effect of multiple potentially
limiting nutrients. Here we assume that limitation by a sat-
uration model and a quota model can be combined in a

Figure 1. Incomplete record of published estimates of
global particulate net primary production. Estimates before
1990 are extrapolations of in situ observations, estimates
between 1995 and 2008 are satellite algorithms [Riley,
1939; Steeman Nielsen and Jensen, 1957; Gessner, 1957;
Koblenz-Mishke, 1970; Platt and Subba Rao, 1975; Eppley
and Peterson, 1979; Berger et al., 1987; Longhurst et al.,
1995; Antoine et al., 1996; Behrenfeld and Falkowski,
1997; Mélin, 2003; Behrenfeld et al., 2005; Westberry
et al., 2008], and the 2013 estimate is our ocean biogeochem-
ical model (this study: depth-resolved PlankTOM5.3).
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single minimum function to represent the maximum pho-
tosynthesis rate:

PC max ¼ PCref ;0° � Q10
∧T=10

· min
Q� Qmin

Qopt � Qmin
;

NO3

K1=2
;NO3 þ NO3

;
SiO3

K1=2
;SiO3 þ SiO3

; 1

 !

(3)

where PCref is the maximum assimilation rate at 0°C, Q10 is the
temperature dependence of growth, T is temperature, Q is the
internal phytoplankton Fe:C quota, NO3 and SiO3 are the
seawater nutrient concentrations, and K½ are the half satura-
tion concentrations for growth.
[10] The assimilation rate for iron is

PPi
Fe ¼ ρhimax � ρhimax � ρlomax

� �� Q� Qmin

Qmax � Qmin

� �� �

·Q10
∧T=10 � Fe′

K1=2
;Fe þ Fe′

(4)

where ρhimax is the maximum iron uptake rate at iron limita-
tion, ρlomax (= μmax Qmax) is the steady state iron uptake rate
at saturating iron concentrations, Fe′ is the dissolved iron
concentration, and K½, Fe is the half saturation concentration
for iron uptake.
[11] The assimilation rate for chlorophyll is

PPi
Chl ¼ PCmax � 1� exp

�αChlθCI
PC max

� �� �� �2

� θC max

�αChlθCI
(5)

where θCmax is the maximum chlorophyll-to-carbon ratio.
[12] We simplified the phytoplankton loss rates to a single

term that represents respiration, aggregation, and mortality
because insufficient data were available to separately repre-
sent these processes. Compared to the previous model ver-
sion [Buitenhuis et al., 2010], the loss term dependent on
nutrient limitation was removed, but the quadratic loss term
was retained, as follows:

wPi¼ Lþ Ldia � 1�min
Fe′

K
1=2
; Fe

NO3

K
1=2
;NO3

;
SiO3

K
1=2
;SiO3

; 1

 ! ! 

(6)

where L is the loss rate and Ldia is the additional loss term for
nutrient-limited diatoms.
2.1.2. Biophysical Feedback
[13] The change in temperature through heat absorption by

chlorophyll for each phytoplankton plankton functional type
(pPFT) was calculated according to Manizza [2006; see also
Manizza et al., 2008], as

δT
δt

¼ ∑ Ez λð Þ � EzþΔz λð Þð Þ
ρ Cp

(7)

and

EzþΔz λð Þ¼ Ez λð Þ e-Σ kw λð ÞþΣχ λ;PFTð ÞChlPFTð ÞΔz (8)

[14] in which T is the temperature, Σ are the sums over the
wavelength bands λ (blue, red, and infrared) or pPFTs, E is
the light intensity in Wm�2, z is depth at the top of each
model box, Δz is the depth of each model box, ρ is the den-
sity of seawater, Cp is the specific heat of seawater, kw(λ) is
the extinction coefficient of pure water, and χ(λ,PFT) is the
PFT-specific extinction coefficient of chlorophyll.
2.1.3. Ballasting of Sinking Particulate Organic Carbon
by CaCO3 and SiO2

[15] We recalculated the ballasting parameters of the model,
which increases the sinking speed of big particles as their con-
tent of detrital CaCO3 and SiO2 increases. All detrital CaCO3

and SiO2 end up in big particles. Small organic carbon parti-
cles sink at a fixed rate of 3md�1. First, the dependence of
the drag coefficient (Cd) on the Reynolds number (Re) was
fit to the data from Ploug et al. [2008, Figure 2], using their
measurements on fecal pellets and the data they reproduce
from Taghon et al. [1984]. This gave Cd= 51Re�0.56. Then,
the drag equations [Buitenhuis et al., 2001] were solved offline
by iteration. This gave pairs of particle density and sinking
speed. Lastly, a simple function between particle density and
sinking speed was derived for use in the model. With the
new data, the function changed from concave to convex (i.e.,
from changing faster at high densities to changing faster at
low densities). We therefore changed the function to

vsink ¼ a� ρ� ρswð Þ∧b (9)

in which vsink is the sinking speed of big particles; ρ is the
density of the particle, which is calculated from the compo-
sition in organic matter, CaCO3, and SiO2; and ρsw is the
density of seawater. The densities were calculated from
Ploug et al. [2008, Table 3], assuming that the organic
matter in the three types of fecal pellets had the same
density, giving ρorganic = 1.08 kg L�1, ρCaCO3 = 1.34 kg L�1,
ρSiO2 = 1.2 kg L�1, a = 0.0303, and b = 0.6923.

2.2. Nucleus for European Modelling of the Ocean
(NEMO) Physical Model and Model Forcing

[16] The PlankTOM5.3 biogeochemical model was run
online in the ocean general circulation model (OGCM)
NEMOv2.3 [Madec, 2008]. We use the ORCA configuration
with a horizontal resolution of 2° longitude and on average
1.1° latitude, and a vertical resolution of 10m in the top
100m, increasing to 500m at 5 km depth. The model has a
free surface height [Roullet and Madec, 2000]. It is coupled
to a dynamic-thermodynamic sea ice model [Timmermann
et al., 2005]. The vertical mixing is calculated at all depths
using a turbulent kinetic energy model [Gaspar et al.,
1990]. Subgrid eddy-induced mixing is parameterized
according to Gent and McWilliams [1990].
[17] The standard simulation was run from 1920 to 2009.

The model was spun up from 1920 to 1947 using constant
atmospheric forcing of daily wind and precipitation
from the National Centers for Environmental Prediction
reanalysis [Kalnay et al., 1996] repeated every year using
values for year 1980, followed by varying atmospheric
forcing corresponding to each year from 1948 to 2009.
Perturbation experiments were initialized with the output
of the standard simulation and were run from 2004 to
2009. Results, unless otherwise stated, are analyzed for
year 2009.
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3. Materials and Methods

3.1. Database and Treatment of Observations

[18] We synthesized observations of 14C NPP in the
ocean (Table S1 in the supporting information, Figures 2a
and 2d). The average relative error of the measurements is
19%, decreasing to 12% for values over 10μg CL�1 d�1.
The error was calculated from the replicated, nonzero
California Cooperative Oceanic Fisheries Investigations
data only (n = 8094).
[19] The NPP database contains 50,050 data points. The data

are available at http://lgmacweb.env.uea.ac.uk/green_ocean/.
biogeodata.html. The data were binned on the model grid (2°
in longitude, 1.1° average in latitude, 31 vertical levels, and a
monthly climatological year), leaving 22,017 grid points.
From a simple average of the observations alone, about half of
NPP takes place in the top 20m and 90% in the top 100m
(Figure 2d). The database containsmore data in the low latitudes
(Figure 2a), with 69% of the gridded data points in the tropics
(23°S–23°N), which make up 42% of the surface area of the
ocean. There are no observations in the south of 25°S in winter.
We also computed the vertically integrated NPP containing
7509 data points. The vertical integration greatly reduces the
number of data, leaving 3132 data points on the model grid,
or almost 7 times less than the depth-resolved database.
[20] The 14C technique measures only particulate NPP.

We therefore compared the observations to the particulate
NPP in the model. In addition, the model phytoplankton
produce 5% of primary production as DOC (equation (1),
Table S2), based on the nutrient sufficient data compiled
by Nagata [2000]. Validating this dissolved NPP falls out-
side the scope of this paper.
[21] In addition to NPP, the model was evaluated using

the World Ocean Atlas 2005 data set of in situ chlorophyll
(Figure 3d), which contains 104,689 data points on the
model grid. We used World Ocean Atlas (WOA) chloro-
phyll (Chl) because it is depth resolved and therefore
helps to evaluate our depth-resolved model. Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) chlorophyll is used

for graphical comparison only, because its horizontal cover-
age is more complete. In fact, coverage is so good that
between ~50°S and ~50°N, we also calculate interannual
variability of surface Chl. Mixed layer depth (Figure 3d)
was calculated from World Ocean Atlas 2005 temperature
and salinity, using a density criterion of 0.03 kgL�1 [de
Boyer Montégut et al., 2004].

3.2. Parameterization of the PlankTOM5.3
Biogeochemical Model

[22] The maximum assimilation rate was calculated as the
maximum growth rate divided by the fraction of primary pro-
duction that is particulate (i.e., not DOC):

PCref ;0°¼ μmax;0°= 1� dð Þ (10)

[23] The maximum growth rate parameters (μmax, 0°, Q10)
were fit to laboratory data (Table S2, Figure 4). For diatoms
and mixed phytoplankton, we used the data from the
Liverpool Phytoplankton Database [Bissinger et al., 2008].
This database did not include any measurements on
coccolithophores. Therefore, for coccolithophores, we used
the data of Buitenhuis et al. [2008].
[24] The light limitation parameters (αChl, θCmax) were taken

as the average for the three pPFTs from Geider et al. [1997].
The iron limitation parameters (ρhimax/ρlomax, K½, Fe, Qmin, Qopt,
Qmax) for diatoms and coccolithophores were taken from the
data for Thalassiosira oceanica and Emiliania huxleyi in
Buitenhuis and Geider [2010]. The iron limitation parameters
for mixed phytoplankton were based on the Pelagomonas
calceolata data in Sunda and Huntsman [1995].

3.3. Tuning of the Standard Simulation
of PlankTOM5.3

[25] The above selection of parameters without prior model
adjustments led to a strong overestimate in coccolithophores,
accounting for ~60% of the phytoplankton biomass, an unreal-
istically high figure [Le Quéré et al., 2005]. As a consequence,

a b c

d e f

Figure 2. (a) 14C measured surface (0–10m) primary production (μgC·(L·day)�1). The white area indi-
cates no observations. (b) Surface primary production from PlankTOM5.3 best simulation. Model results
are for the same months where there are observations and annual averages everywhere else. (c) Surface pri-
mary production NSI-MEM best simulation. (d) 14C measured zonally averaged primary production
(μgC·(L·day)�1). (e) Zonally averaged primary production from PlankTOM5.3 best simulation. Model
results are for the same longitudes and months where there are observations and zonal annual averages
everywhere else. (f) Zonally averaged primary production NSI-MEM best simulation. The white area indi-
cates negative NPP.

BUITENHUIS ET AL.: OCEAN PRIMARY PRODUCTION

850

http://lgmacweb.env.uea.ac.uk/green_ocean/.biogeodata.html
http://lgmacweb.env.uea.ac.uk/green_ocean/.biogeodata.html


CaCO3 export at 3.4 PgCyr�1 was also unrealistically high
[Lee, 2001]. We adjusted coccolithophore model parameters
to obtain a realistic ecosystem distribution. We decreased the
competitiveness of coccolithophores by increasing the relative
preference of mesozooplankton for coccolithophores to 2.5
times that of mixed phytoplankton, doubling their K½, Fe to
2.6 nmol L�1 relative to the observed value for E. huxleyi
[Buitenhuis and Geider, 2010], and increasing their K½, NO3

to 0.4μmolL�1. Rather than change one parameter a lot, we
chose to change these three parameters in an effort to keep
them within the (poorly constrained) range of observed/realis-
tic values. This gave a realistic coccolithophore biomass of
25% of the phytoplankton and a more realistic CaCO3 export
of 1.6 PgCyr�1. As in previous versions of the model, we
tuned the particle degradation rate to get a realistic air-sea
CO2 flux of 2.1 PgCyr�1 in the 1990s, within 5% of
Denman et al. [2007].

3.4. Model Evaluation and Statistics

[26] As in Buitenhuis et al. [2010], we evaluate the model
using the following cost function:

cost function ¼ 10averageðj10log model=observationð ÞjÞ (11)

[27] This cost function gives the same penalty when the
model is half the observed value or when the model is twice
the observed value. It is also a relative measure of error and
thus gives the same penalty for small and large values.We also
use the square root of the average residual sum of squares:

RSS0:5 ¼ Σ model� observationð Þ2
� �

=n
� �0:5

(12)

[28] This formulation is dominated by errors in the large
values. It has the same units as the observations. For both these
evaluations, the observations were binned onto the model grid.
[29] We calculated the 95% confidence intervals of NPP

from the ratio of two residual sum of squares (RSS) values,
using the following formula [Abramowitz and Stegun, 1972]:

RSS

RSSmin
¼ 1:645� n

n� 2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2n� 2ð Þ
n n� 4ð Þ

� �s
þ n

n� 2
(13)

where RSSmin is the value for the model simulation that
best fit the observations, RSS are the values for the model
simulations that are inside or just outside the confidence

a b c

g h i

d e f

Figure 3. (a) Surface chlorophyll a (μg L�1, SeaWiFS). (b) Surface chlorophyll a (PlankTOM5.2). (c)
Surface chlorophyll a (PlankTOM5.3 standard simulation). (d) Chlorophyll a (μg L�1,WOA 2005) and
mixed layer depth (black line), [de Boyer Montégut et al., 2004]. (e) Chlorophyll a and mixed layer depth
(PlankTOM5.2). Model results are for the same longitudes and months as the observations and zonal
annual averages everywhere else. (f) Chlorophyll a and mixed layer depth (PlankTOM5.3). (g) Relative
standard deviation (%) of surface chlorophyll a (SeaWiFS). (h) Relative standard deviation of surface chlo-
rophyll a (PlankTOM5.2). (i) Relative standard deviation of surface chlorophyll a (PlankTOM5.3).

Figure 4. Phytoplankton maximum growth rates (d�1) as a
function of temperature (°C). Crosses, solid line: diatoms
[Bissinger et al., 2008]. Triangles, short dashed line:
coccolithophores [Buitenhuis et al., 2008]. Circles, long
dashed line: mixed phytoplankton [Bissinger et al., 2008].
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interval, 1.645 is the F distribution value for p = 0.05, and n is
the degrees of freedom. An F distribution is appropriate for
the ratio of two χ2 distributions, such as squared residuals
[Berry and Lindgren, 1990]. We approximated n with the
number of observations (binned by month on the model grid)
because most model parameters were constrained by addi-
tional observations and were therefore not free parameters.
In addition, the number of parameters in the biogeochemical
model (~100) is small relative to the number of observations
(20,394 for NPP and 104,689 for Chl). This procedure for
calculating confidence intervals assumes that the model
simulations are independent and that the average residual of
the simulation with RSSmin is 0. It is clear that the model
simulations are not independent, and the average residual
of the simulation with RSSmin is �13% relative to the
observations. Nevertheless, the model results that best match
the observations and their confidence intervals should be
robustly estimated given that we used very large sample sizes
[Donaldson, 1968]. It should be noted that the confidence
intervals only account for the uncertainty arising from the
model-observation mismatch, including the measurement
error in the observations, but not from any biases in the
observations, the most likely of which are spatial bias and
the possible underestimation of NPP by up to 13% noted in
the introduction. To analyze the potential for spatial bias in
the observations to introduce a bias in the best estimate of
global NPP, we repeat the analysis by regions.

3.5. NSI-MEM Biogeochemical Model

[30] To check the robustness of our statistical methodology
and results, we also use the NSI-MEM model [Shigemitsu
et al., 2012]. NSI-MEM is based on the NEMURO (North
Pacific Ecosystem Model for Understanding Regional
Oceanography) model [Kishi et al., 2007] and includes an
iron cycle [Shigemitsu et al., 2012]. The model was devel-
oped in a 1-D setting, but here we run it in the OGCM
COCO (CCSR Ocean Component Model) [Aita et al.,
2007]. Thus, both the biogeochemical and physical models
are different from PlankTOM5-NEMO. The parameters used
by Shigemitsu et al. [2012] were tuned for application in the
western North Pacific. Here, we tuned the parameters for
application in the global ocean as given in Table S3.

3.6. Perturbation Experiments

[31] The statistical evaluation requires a number of model
simulations that span the expected ranges of global NPP.
These ranges were obtained by performing perturbation
experiments of PFT turnover rates.
[32] In PlankTOM5.3, PFT turnover rates were increased

to match the upper 99% of observed rates, following the con-
cept introduced by Eppley [1972] that the phytoplankton
with the highest growth rates will outgrow the others and thus
are most representative of the population growth rate.
Combining these high growth rates with observed resource
efficiencies would create a model organism that could not
exist in nature [cf. Litchman et al., 2007]. Therefore, in the
standard simulation, we have used growth rates that were fit
to all data. We used the 99% approach in the perturbation
experiments, not only for phytoplankton, but for zooplankton
rates as well. We increased the turnover rate until 99% of the
data (or at least two points for coccolithophore growth rate)
were under the curve at a constant Q10. Note that by keeping

the Q10 constant, it becomes easier to interpret the results
than if we had increased both the turnover rate and the Q10.
The following turnover rates were increased: phytoplankton
growth rate, zooplankton grazing rates, zooplankton respira-
tion and mortality, and organic particulate detritus degradation
rates. The latter was insufficiently constrained by observa-
tions, so we increased it by factors 1.5, 2, and 3. This resulted
in a wide range of NPP rates for the statistical evaluation. For
the regional analysis of NPP, a wider range of perturbations
was needed. Parameter values are given in Table S4.
[33] In NSI-MEM, perturbation experiments used the same

general approach as for PlankTOM5.3, increasing phyto-
plankton maximum nutrient uptake rate and particulate
organic matter degradation rates. Because of the different
model structure, we do not use the same observational data
to calculate the parameters in the perturbation experiments
but use simple scaling factors (Table S5).
[34] About 3 times more perturbation experiments were

performed with both models than are reported here. The
experiments cover changes in zooplankton and remineralization
parameters and all the phytoplankton parameters in equa-
tions (1)–(5). We report only the simulations that showed
the lowest RSS at each global NPP. This ensures that the
reported RSSmin is the best constrained by the observational
database and that the reported 95% confidence interval cov-
ered was as good a sample of the total parameter space as we
could achieve and thus at its widest.

4. Results

4.1. Evaluation of New Model Components

[35] We evaluated the PlankTOM5.3 model against 4-D
fields (latitude, longitude, depth, and month) of NPP,
chlorophyll concentration, phytoplankton growth rate,
microzooplankton-caused phytoplankton mortality rate,
microzooplankton concentration, 2-D fields (latitude, longi-
tude) of mesozooplankton concentration, export at 100m,
and the global rate of mesozooplankton grazing on
phytoplankton. Data sources for observations are given in
Table 1. Compared to the PlankTOM5.2 model [Buitenhuis
et al., 2010], PlankTOM5.3 shows improvements in all cost
functions relative to the observational databases (Table 2)
and also improved average rates and concentrations for
NPP, average chlorophyll and microzooplankton concentra-
tion, microzooplankton-caused phytoplankton mortality
rate, and global mesozooplankton grazing rates, the same
average phytoplankton growth rate, but deteriorated average
mesozooplankton concentration and export (Table 1).
[36] The chlorophyll concentration in PlankTOM5.3 has

clearly improved relative to PlankTOM5.2 (Tables 1 and 2;
Figures 3a–3c). We performed sensitivity simulations with-
out the biophysical feedback or the new ballasting formula-
tion (see sections 2.1.2 and 2.1.3). These simulations
showed virtually the same improvements in chlorophyll
concentration, NPP, and other cost functions (Table 2),
showing that the improvements are due to the new photosyn-
thesis model. The model now includes a clear deep chloro-
phyll maximum in the tropics with no deep productivity
maximum (Figure 2), as observed. However, the deep chlo-
rophyll maximum is too deep, probably due to the fact that
the physical model produces an upper mixed layer that is
too deep (Figures 3d and 3f).
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[37] There is a marked improvement in the interannual var-
iability of chlorophyll in PlankTOM5.3 compared to
PlankTOM5.2 (Figures 3g–3i). Comparison of the relative
interannual variability in Chl:C, phytoplankton C, and NPP
shows that the former is low, while the latter two closely
resemble the interannual variability in Chl in the respective
model versions (data not shown). This suggests that the
improvement in the model is not primarily due to a better rep-
resentation of phytoplankton chlorophyll content but that the
signal originates in a better representation of NPP and prop-
agates into phytoplankton carbon. This interpretation is con-
sistent with the fact that PlankTOM5.2 already included
variable Chl:C, while PlankTOM5.3 has added the effect of
the Chl:C ratio on NPP. It thus suggests that the new formu-
lation, which is more directly based on observations for its
equations and parameters, better captures the sensitivity of
(carbon) NPP to variability in the atmospheric forcing. This
will be an important improvement when exploring the feed-
backs between climate change and global biogeochemical
cycles in future studies.
[38] As noted above, the cost function of export at 100m

has improved relative to the inversion results of Schlitzer
[2004]. Since ocean biogeochemistry, in particular air-sea
CO2 flux, is very sensitive to export, this result warrants
further analysis. We compared the global average nutrient
profile of PlankTOM5.2, which has slightly higher
export, and the standard simulation of PlankTOM5.3
to the World Ocean Atlas observations (Figure 5). Both
model runs were initialized with these observations, and the
standard simulation has remained closer to the observations,

even though PlankTOM5.3 was run longer (90 years) than
PlankTOM5.2 (60 years). As a consequence, the cost function
has decreased from 1.5 to 1.3. This would only be an indica-
tion that the model has improved if the ocean had been
in steady state over that time, which we know it was not
[Le Quéré et al., 2007]. However, the interannual variability
of chlorophyll has also improved considerably in the standard
simulation (Figures 3g–3i), which is sensitive to the nutrient
concentration gradient across the permanent thermocline.
This gradient is sharper and thus closer to the observations
in the standard simulation (Figure 5c). We therefore con-
clude that the lower export constitutes a real improvement
in the model.
[39] The supporting information presents additional graphs

comparing observations andmodel for microzooplankton con-
centration, microzooplankton-caused phytoplankton mortal-
ity, phytoplankton growth rate, and mesozooplankton and
phosphate concentration and export (Figure S1).

4.2. Global and Regional Estimates of NPP

[40] The previous model version, PlankTOM5.2, already
was the ocean biogeochemical model with the best fit to the
observations of NPP at Bermuda Atlantic Timeseries
Station (BATS) and Hawaii Ocean Timeseries (HOT) out
of 12 models tested [Saba et al., 2010]. Here, we make a fur-
ther slight improvement in the cost function (Table 2)
and the depth-resolved and vertically integrated RSS0.5

(Figures 6a and 6b) of PlankTOM5.3 relative to the obser-
vational database of NPP (equations (11) and (12)).

Table 1. Average Concentrations and Globally Integrated Rates in Perturbation Tests with PlankTOM5.3

Parameters
PPa,b

μgC·(L·d)�1
Chlb,c

μg·L�1
Phygrob,d

d�1
Phymorb,d

d�1
Microzb,e

μgC·L�1
Mesozb,f

μgC·L�1
Mesphyg

PgC·yr�1
Exporth

PgC·yr�1

Observation 7.0 0.22 0.63 0.43 2.8 7.1 5.5 9.6
PlankTOM5.2 Buitenhuis et al. [2010] 4.8 0.12 0.32 0.10 1.7 2.1 14.7 9.1
Standard Table S2 5.3 0.17 0.32 0.16 2.5 1.2 10.4 8.4
No Chl heating 5.3 0.17 0.32 0.17 2.4 1.2 10.4 8.4
Old ballast 5.7 0.17 0.31 0.16 2.4 1.4 14.3 7.2
Perturbation 99% phyto growthi 5.5 0.18 0.35 0.18 3.4 1.6 13.4 11.23

99% micro growth j 2.4 0.10 0.36 0.25 2.3 0.4 3.7 3.5
intermediate micro growth j 3.7 0.12 0.36 0.24 2.7 0.7 6.0 5.3

i + 99% zoo growthk 0.9 0.01 0.68 0.00 0.1 0.5 6.9 2.6
k + 99% zoo loss 2.2 0.05 0.57 0.00 0.1 0.6 17.2 5.2

i + 1.5× 6.1 0.19 0.38 0.14 3.6 1.8 15.8 10.4
part degrm

i + 2× 6.7 0.20 0.41 0.16 4.0 1.9 18 9.8
part degrm

i + 3× 7.9 0.22 0.45 0.19 4.3 2.1 22.1 8.7
part degrm

i + 4× 9.1 0.23 0.49 0.24 4.7 2.3 25.1 7.8
part degrm

i + 5× 10.1 0.24 0.52 0.26 4.9 2.5 28.2 7.0
part degrm

aParticulate net primary production.
bThe model was sampled where evaluation data were available.
cChlorophyll, World Ocean Atlas 2005.
dPhytoplankton growth rate and microzooplankton-caused phytoplankton mortality rate from dilution experiments [Buitenhuis et al., 2010].
eMicrozooplankton biomass [Buitenhuis et al., 2010].
fMesozooplankton biomass [Buitenhuis et al., 2006].
gMesozooplankton grazing on phytoplankton [Calbet, 2001].
hExport at 100m [Schlitzer, 2004].
i,jAll other parameters as in standard simulation.
k,mInclude the changes made in i.
lIncludes the changes made in i and k.
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[41] The perturbation experiments with both models
cover a range of NPP from ~10 to ~85 Pg C yr�1 (parameter
values in Tables S4 and S5). The simulations have clear
increases of the RSS0.5 at the high and low ends which are
used to estimate the 95% confidence intervals. The global
modeled ocean NPP most consistent with the depth-
resolved 14C observations is 56PgCyr�1 with a 95% confi-
dence interval of 51–65PgCyr�1. Perturbation experiments
with the NSI-MEM model suggest the same global NPP of
56PgCyr�1, but with a wider 95% confidence interval of
42–68PgCyr�1 (Figure 6a).
[42] The global modeled ocean NPPmost consistent with the

vertically integrated 14C observations is 51PgCyr�1 (95%
confidence interval 37–63PgCyr�1) for PlankTOM5.3 and
44PgCyr�1 (95% confidence interval 23–53PgCyr�1) for
NSI-MEM (Figure 6b). The vertically integrated estimate for
PlankTOM5.3 agrees well with the depth-resolved estimate.
However, the 95% confidence interval is almost twice as wide
because of the smaller number of data points. Because NSI-
MEM overestimates NPP in the tropics (Figure 2c) where there
are about twice as many observations as in the rest of the ocean

(Figure 2a), the lower estimate of vertically integrated NPP in
NSI-MEM can be discounted as biased.
[43] We also used the perturbation experiments to calculate

the best estimates of NPP in 10 regions: 9 open ocean regions
in the Pacific, Atlantic, and Indian Ocean basins divided into
tropics (23°S–23°N) and the extratropics in both hemi-
spheres, and the coastal (<200m depth) ocean (Table 3).
We also estimated the 95% confidence intervals for each
region with the PlankTOM5.3 model. The confidence inter-
vals from the NSI-MEM model for some of the regions were
not sufficiently constrained by the perturbation experiments.
In both models, the largest contributions to global NPP are
made by the Pacific Ocean and the tropical region, both about
50%, and roughly a quarter by the Atlantic and Indian
Oceans and also by the southern and northern extratropics,
while the coastal ocean contributes 8% in PlankTOM5.3
and 9% in NSI-MEM. Relative to the region areas, both
models agree that the largest contribution is made by the
coastal ocean, 77% larger than expected from its area in
PlankTOM5.3 and 98% larger in NSI-MEM, followed by
the North Pacific, 54% and 40% larger than expected from

Table 2. Cost Functions in Perturbation Tests with PlankTOM5.3 (Equation (11))

Parameter Values PP Chl Phygro Phymor Microz Mesoz Export

PlankTOM5.2 Buitenhuis et al. [2010] 3.5 5.1 2.5 41 2.8 6.7 2.1
Standard Table S2 3.3 4.3 2.3 15 2.6 6.4 2.0
No Chl heating 3.3 4.3 2.3 15 2.6 6.4 2.0
Old ballast 3.3 4.3 2.3 15 2.6 6.1 2.0
Perturbation 99% phyto growthi 3.2 4.3 2.4 24 2.7 5.7 2.0

99% micro growthi 3.4 5.3 2.1 3.0 2.2 16.1 3.6
intermediate micro growthi 3.2 4.6 2.1 4.5 2.4 9.7 2.5

i + 99% zoo growthj 7.1 13.5 1.9 3134 3.6 8.0 4.3
j + 99% zoo lossk 4.3 6.3 2.1 2975 3.6 9.0 2.8

i + 1.5× 3.3 4.3 2.3 22 2.7 5.2 2.0
part degrl

i + 2× 3.4 4.3 2.2 16 2.6 4.9 2.0
part degrl

i + 3× 3.6 4.4 2.2 12 2.6 4.5 2.0
part degrl

i + 4× 3.6 4.4 2.1 8.6 2.5 4.3 2.0
part degrl

i + 5× 3.8 4.5 2.0 8.5 2.5 4.1 2.0
part degrl

i,j,k,lAs in Table 1.

a b c

Figure 5. (a) Zonal average difference between PlankTOM5.2 macronutrient concentration in 2007
and World Ocean Atlas 2005 PO4 concentration (μmol L�1, depth in meters). (b) Zonal average
difference between PlankTOM5.3 macronutrient concentration in 2007 and World Ocean Atlas 2005
PO4 concentration. (c) Area weighted average nutrient concentration. Black line: World Ocean Atlas
2005 PO4 concentration. Also, model macronutrient concentration initial conditions. Green line:
PlankTOM5.2 macronutrient concentration in 2007. Red line: PlankTOM5.3 standard simulation
macronutrient concentration in 2007.
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its area, and the equatorial Indian Ocean, 26% and 49% larger
than expected from its area, and also that the smallest relative
contribution is made by the South Atlantic, 37% and 67%
smaller than expected from its area. The South Indian and
South Atlantic are least constrained by the observations,
87% and 84% fewer observations than expected from their
areas. The models disagree about the absolute amount of
NPP in the South Pacific and South Indian, with lower NPP
in NSI-MEM in the South Pacific and higher in the South
Indian, and the NPP in the equatorial Pacific is also slighty
lower than the PlankTOM5.3 95% confidence interval.
[44] We compare our results to four satellite-based algo-

rithms of NPP. Although satellite algorithms are sometimes
treated as if they were observational data by ocean biogeo-
chemical modelers, these algorithms are in fact themselves
models with considerable uncertainties associated with their
equations, parameters, and input data choices [Friedrichs
et al., 2009; Saba et al., 2010]. Satellites do not cover the
whole ocean, mostly because of cloud cover. The results
with PlankTOM5.3 suggest that for the SeaWiFS satellite,
NPP at grid cells where chlorophyll data are not available
from the SeaWiFS satellite is about half of the average
NPP over the SeaWiFS-covered part of the ocean.
Therefore, the range of global NPP for each satellite
algorithm was estimated between a low estimate assuming
zero NPP when no chlorophyll data were available and a

high estimate assuming an average NPP (Figure 6b). Our
calculated global NPP rates for the satellite algorithms are
slightly different from the original publications because
we calculated the results on our model grid. For Antoine
et al. [1996] we calculate 38.0–39.0 Pg C yr�1, for
Behrenfeld and Falkowski [1997] 46.0–47.6 Pg C yr�1, for
Mélin [2003] 50.3–51.3 Pg C yr�1, and for Behrenfeld
et al. [2005] 65.7–70.7 Pg C yr�1. For the Behrenfeld
and Falkowski [1997] algorithm, our high estimate
matches the corrected estimate from this algorithm in
Field et al. [1998]. The RSS0.5 for the Behrenfeld and
Falkowski [1997] algorithm is comparatively high. This
result is dominated by overestimations of more than
5000mgCm�2 d�1 in only 23 coastal sites (<1% of the
observations). The Antoine et al. [1996] algorithm falls be-
low both of the depth-resolved 95% confidence intervals,
and the Behrenfeld and Falkowski [1997] algorithm falls
below the PlankTOM5.3 depth-resolved confidence inter-
val. The Behrenfeld et al. [2005] algorithm falls just above
the PlankTOM5.3 depth-resolved confidence interval, only
partially overlaps with the NSI-MEM depth-resolved confi-
dence interval, and is well above both vertically integrated
confidence intervals. The Mélin [2003] and Westberry et al.
[2008] algorithms are closest to our best estimates of depth-
resolved global NPP and fall within the PlankTOM5.3
depth-resolved confidence interval. Our results confirm, on
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Figure 6. RSS0.5 for different models. Filled symbols: standard simulation. Open symbols: perturbation
simulations. (a) 3-D primary production. Left y axis: PlankTOM. Right y axis: NSI-MEM. (b) 2-D inte-
grated primary production. Symbols without error bars: biogeochemical model simulations. Error bars
without symbols: ranges from satellite-based algorithms (see text for details). These are, from low to high
productivity, Antoine et al. [1996], Behrenfeld and Falkowski [1997], Mélin [2003], Westberry et al.
[2008], and Behrenfeld et al. [2005]. Circles: PlankTOM5.3. Crosses: NSI-MEM.

Table 3. Regional Analysis of Primary Production (PgC/yr)

Open Ocean PlankTOM5.3 Pacific Atlantic Indian Latitude Total Latitude Total NSI-MEM

North 8.7 3.8 0.10 12.6 11.9
(5.4–9.2) (3.3–6.0) (0a–0.12) (9.3–14.9) (6.1–NCb)
n = 1,867 n = 1,306 n = 22

Tropics (23°S–23°N) 11.9 5.2 7.5 24.7 24.2
(9.9–15.6) (2.1–7.6) (7.0–8.3) (20.9–29.2) (15.9–31.4)
n = 10,946 n = 1,168 n = 1,896

South 10.3 3.1 2.5 15.9 9.2
(9.0–11.1) (0a–4.0) (1.6–3.4) (12.4–17.4) (5.6–11.7)
n = 1,885 n = 293 n = 248

Coast 4.5 4.3
(3.1–4.9) (0.4–NCb)
n = 763

Total 30.9 12.2 10.1 57.7 49.6
(27.7–31.4) (7.7–15.5) (9.1–11.3) (51.4–63.0) (38.1–NCb)

aThe perturbation simulations did not constrain the lower 95% confidence intervals, but a priori knowledge says they must be ≥0.
bNC: not constrained by the simulations.
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a global scale, the analysis of Saba et al. [2010] at BATS
and HOT that “the difference in overall skill between the
best BOGCM and the best ocean color model at each site
was not significant” (Figure 6b).
[45] Our analysis suggests that the Behrenfeld and

Falkowski [1997] model underestimates global NPP, whereas
Milutinovic and Bertino [2011] suggest it has a positive bias.
This discrepancy occurs despite the fact that Milutinovic and
Bertino [2011] exclude the coastal ocean, which we find to
be overestimated and the biggest contributor to RSS0.5 in the
Behrenfeld and Falkowski [1997] model. The reason for this
discrepancy is due to methodology: Milutinovic and
Bertino [2011] assume that the Behrenfeld and Falkowski
[1997] model is flawless and that the uncertainty of the
output stems from the uncertainty in the input data, whereas
we directly assign a cost function to the output using
observed local 14C primary production. We make no a priori
assumption that our standard simulation is the best model (it
is not) but use the observations to estimate both the most
likely global NPP and its confidence interval.

5. Discussion

[46] By combining state-of-the-art models of ocean biogeo-
chemistry and physics, we are able to analyze a model that
is depth resolved and has a physically realistic, mechanistic
representation of photosynthesis, light extinction, temperature
distribution, and nutrient transport. The inclusion of a new
photosynthesis model in PlankTOM5.3 has improved the
representation of NPP and all the other cost functions of

biogeochemical concentrations and rates (Table 2). The
interannual variability of the detrended NPP in the standard
simulation is 0.4 PgCyr�1, or a peak-to-peak variability of
1.7 PgCyr�1. Thus, interannual variability is small relative
to the 95% confidence interval of the year 2009 model results.
[47] The two main ways to narrow the confidence interval

are to improve the model (decrease RSSmin, equation (13))
and to increase the number of observations. Analysis of the
spatial distribution of residuals between NSI-MEM and the
observations suggests that the 95% confidence interval is
larger than in PlankTOM5.3 because in the simulation that
fits best to the observations (RSSmin, equation (13)), there
is a trade-off between some regions being overestimated
and some regions being underestimated. Because of this, per-
turbation experiments lead to improvements in some regions,
resulting in a slow increase in the RSS away from RSSmin

and thus a large confidence interval. To some extent, this
trade-off is probably an inevitable product both of using
point observations with measurement errors to evaluate rela-
tively large regions in space and time, and of inadequacies in
the models. However, the results are consistent with the
expectation that a better model would suffer less from such
a trade-off between localized improvements and deteriora-
tions, and would therefore have a faster increase in RSS away
from RSSmin and therefore have a smaller 95% interval, as is
found for PlankTOM5.3. In addition to model improve-
ments, the other way in which we have constrained the
confidence interval is by effectively increasing the number
of observations. The depth-resolved confidence intervals,
which are based on 7 times more data, are smaller than the
vertically integrated confidence intervals for both models.
For the depth-resolved evaluation of PlankTOM5.3, which
has the lowest RSSmin, the model is now able to provide a
confidence interval that is smaller than the range of satellite
algorithms published since 1996.
[48] The regional analysis with PlankTOM5.3 is well

within the 95% confidence interval of the global analysis
with both models. This shows that despite a spatial bias in
the number of observations, the model is mechanistically
realistic enough that it can produce reliable results in regions
where NPP is less well constrained by the observations.
Though the regional analysis with NSI-MEM gives a lower
global total, the upper 95% confidence interval of this esti-
mate is unconstrained and thus does not contradict these
results. More observations in the Southern Ocean could
improve the constraints on the estimated NPP and resolve
the disagreement between the regional analysis of the two
models in the South Pacific and South Indian.
[49] Our analysis shows that implementing the dynamic

iron-light colimitation model of Buitenhuis and Geider
[2010] leads to a clear improvement of the ability of the
PlankTOM5.3 model to reproduce the observations, in par-
ticular the interannual variability of chlorophyll. However,
the parameterization of the model is based on few data and
could probably be improved further by additional constraints
on phytoplankton physiological parameters. Improvements
in the mixed layer depth in the OGCM might also result in
a narrower confidence interval. This scope for improvement
can be seen in the depth of the deep chlorophyll maximum,
which is too deep in PlankTOM5.3 (Figure 3). The too deep
chlorophyll maximum also leads to an overestimation of NPP
below 60m (Figure 2). NPP below 60m contributes ~20% to

Figure 7. Fluxes and standing stocks in the global marine
ecosystem from observations and model extrapolated or
inverted observations. 1Denman et al. [2007], 2da Cunha
et al. [2007], 3GLODAP gridded data with Arctic bottle data
as in Buitenhuis et al. [2010],4this study, 5Calbet [2001],
6PP1 ×microzooplankton-caused phytoplankton mortality/
phytoplankton growth (Table 1), 7Buitenhuis et al. [2006],
8Buitenhuis et al. [2010], 9Buitenhuis et al. [2012],
10Whitman et al. [1998], and 11Schlitzer [2004].
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the global total, but only 2% to the RSS, because NPP vari-
ability decreases with NPP (data not shown). Therefore, this
overestimation has only a small impact on the confidence in-
terval of global NPP.
[50] Figure 7 summarizes the current understanding of the

global marine ecosystem carbon fluxes and standing stocks.
As has been shown before [Calbet, 2001; Calbet and
Landry, 2004], ~80% of NPP is grazed by zooplankton. We
are not aware of estimates on how the remaining 20% gets
partitioned between phytoplankton mortality, viral loss, and
direct export of (aggregating) phytoplankton. After passing
through the epipelagic food web, about one sixth of NPP is
exported below 100m, which implies that five sixth of NPP
is regenerated production.
[51] In conclusion, our results with vertically integrated

NPP support the wide range of previously reported global
estimates, but it provides a quantitative measure of error and
a most likely estimate. The depth-resolved evaluations of
model NPP against observations contain more information
than the vertically integrated evaluation and therefore give a
better constrained estimate. Both models agree that our best
estimate of global ocean particulate NPP from the depth-
resolved evaluations is 56PgCyr�1, while the 95% confi-
dence interval from the better constrained PlankTOM5.3
model is 51–65 or 58± 7PgCyr�1 (Figure 6a).
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