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1. Introduction
Research conducted by the DRAKKAR consortium is motivated 
by open questions related to the variability of the ocean 
circulation and water mass properties during past decades, and 
their effects on climate through the transport of heat. Of primary 
concern is the circulation and the daily-to-decadal variability 
in the North Atlantic Ocean, as driven by the atmospheric 
forcing, by interactions between processes of different scales, 
by exchanges between basins and regional circulation features 
of the North Atlantic (including the Nordic Seas), and by the 
influence of the world ocean circulation (including the Arctic). 
DRAKKAR carries out these  investigations using a hierarchy 
of high resolution model configurations based on the NEMO 
system (Madec, 2007). Simulation outputs are carefully 
evaluated by comparison with collocated existing observations 
(Penduff et al., this issue).
The DRAKKAR consortium was created to take up the 
challenges of developing realistic global eddy-resolving/
permitting ocean/sea-ice models, and of building an ensemble 
of high resolution model hindcasts representing the ocean 
circulation from the 1960s to present. The Consortium favours 
an integration of the complementary expertise from every 
member of the group; the coordination of a simulation program 
that builds a consistent ensemble of 50 year long hindcasts; and 
an increase of available manpower and computer resources.
2. DRAKKAR hierarchy of models 
A hierarchy of embedded model configurations of different 
grid resolution (from coarse to eddy-resolving) has been 
constructed to make possible realistic, long term (several 
decades) simulations of the ocean/sea-ice circulation and 
variability at regional and global scale, and to perform 
sensitivity studies investigating key dynamical processes 
(requiring especially high resolution) and their impact at 
larger scales. The DRAKKAR model configurations are used 
by the participating research teams to address their scientific 
objectives. All configurations are based on the NEMO Ocean/
Sea-Ice GCM numerical code and use the quasi-isotropic global 
ORCA grid (Madec, 2007).
2.1. Global ORCAii configurations
Global DRAKKAR configurations span resolutions of 2° 
(ORCA2), 1° (ORCA1), 1/2° (ORCA05) and 1/4° (ORCA025, 
Fig. 1 page 14). 
The targeted  configuration for the ensemble of hindcasts is the 
eddy permitting ORCA025, extensively described in Barnier et 
al. (2006). Such eddy-permitting models are still worth exploring 
and enhancing, since they will be the target resolution of the 
next generation of climate models. The ORCA grid becomes 
finer with increasing latitude, so the effective 1/4° resolution 
is 27.75 km at the equator and 13.8 km at 60°S or 60°N. It is ~7 
km in the center of the Weddell and Ross Seas and ~10 km in 
the Arctic. In the vertical, there are 46 levels with partial steps 
in the lowest level. Coarser resolution configurations ORCA05, 
ORCA1, and ORCA2 are as similar as possible to ORCA025. 
The AGRIF refinement package (Debreu et al., 2007) allows 
local grid refinements as shown in the Agulhas Retroflection 
region (Fig. 1, Biastoch et al., 2007).

2.2. Regional NATLii configurations
Two North Atlantic/Nordic Seas configurations have been 
implemented: the 1/4° eddy-permitting NATL4 configuration 
(extracted from ORCA025), and the 1/12° eddy-resolving 
NATL12 configuration (Fig. 2). Both include prognostic sea-ice, 
and use open boundary conditions where information provided 
by the global hindcast experiments can be applied. The NATL12 
resolution reaches 4.6 km at 60°N.

 

Fig. 2. The NATL12 domain (1615×1585×50 grid points with partial 
step) and the 2004-2006 mean SSH (in meter, contour interval of 0.1) 
from a hindcast started in 1998 (MERCATOR-Océan)
.
3. 1958-2004 global 1/4° hindcasts carried out in 2006
A key objective of DRAKKAR is to perform long term 
simulations of the atmospherically driven ocean circulation 
and variability over the last 50 years with the ORCA025 
configuration. A coordinated series of simulations were 
conducted in 2006 at LEGI (G70), IFM-GEOMAR (KAB0012, 
KAB002) and KNMI (KNM01) (Table 1), which compare 
the ability of the  Coordinated Ocean adn sea-ice Reference 
Experiment (CORE) (Large & Yeager, 2004, LY04) and ERA40 
atmospheric forcing data sets, and of different T,S restoring 
scenarios to control the strength of the Atlantic meridional 
overturning cell (AMOC) and global T,S drifts. 

Table 1: Forcing parametersof the different experiments. The KNM01 
experiment has not been analysed yet. KAB002 is started from 
KAB001 on January 1st 1985.

ORCA025 2006 sensitivity experiments 
Run G70 KAB001 KAB002 KNM01 
Integration period 1958-2004 1958-2004 1985-2004 1958-2004 
Radiation fluxes CORE CORE CORE CORE 
Turbulent fluxes ERA40 CORE CORE ERA40 
Precipitation CORE* CORE CORE CORE* 
SSS restoring 60 days 300 days 60 days 60 days 
SSS restoring under 
sea-ice 

15 days 300 days 60 days None 

3D T,S restoring in 
polar areas 

None 180 days None None 

Transient Tracers CFC11,C14b CFC11,
SF6

CFC11,
SF6

CFC11,C14b
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All experiments use the downward shortwave and longwave 
radiation forcing from CORE (derived from satellite ISCCP 
products), these variables being significantly biased in ERA40 
(Brodeau et al., 2006). Turbulent fluxes are calculated using 
LY04 bulk formulas, input variables being wind components, air 
temperature and air humidity. Restoring of varying strengths to 
climatological sea surface salinity (SSS) is also used. In addition, 
for the rather uncertain precipation, two different versions were 
used: the original CORE fields and a modified version, CORE*, 
in which original CORE precipation is reduced northward of 
30°N by  15-20%.
3.1. Global drifts
Fig. 3 shows the global drift in temperature and sea surface 
height (SSH). G70 exhibits the smallest SSH drift in 47 years, 
partly a consequence of the restoring to SSS but also due to an 
excess of freshwater (and therefore volume) in the CORE data. 
The comparison of KAB001 and KAB002 demonstrates that 
this drift is more than doubled by the 3D T,S restoring applied 
in polar oceans in KAB001. Drifts are very comparable in G70 
and KAB002 for temperature (0.001°C/y corresponding to a 
surface heat flux imbalance of -0.18 Wm-2), suggesting that 
CORE and ERA40 turbulent fluxes have similar effects on the 
model drift
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Fig. 3: Evolution of global ocean average temperature and sea level 
in G70, KAB001 and KAB002

3.2. Atlantic Meridional Overturning Circulation (AMOC) and 
deep overflows
The strongest AMOC is obtained with the ERA40 forcing 
and reduced northern hemisphere precipitation (G70), with 
a maximum of 17 Sv at 35N (Fig. 4). With the CORE forcing, 
an AMOC of similar structure and reasonable strength (above 
14 Sv at 35N) is obtained only with the 3D restoring at polar 
latitudes (KAB001, not shown). Without this restoring, it 
collapses to under 12 Sv (KAB002, not shown). Other series of 
experiments with ORCA2, ORCA1 and ORCA05 confirmed 
that the AMOC obtained using original CORE turbulent fluxes 
and precipitation is significantly weaker than that obtained 
from  ERA40 and reduced CORE  precipitation in the northern 
hemisphere. Results from ORCA1 also highlight the importance 
of strong under-ice SSS relaxation in maintaining a strong 
AMOC.
Fig. 5 page 14 demonstrates that the weak 3D T,S restoring in 
polar seas (KAB001) maintains realistic dense overflows at the 
Nordic sills over the 47 years, whereas these waters rapidly 
disappear when this condition is removed in KAB002 (with 
a subsequent decrease of the AMOC). Meanwhile, the use of 
ERA40 turbulent fluxes instead of NCEP in the CORE data 
set, in combination with a modification (reduction) of the 
CORE precipation over the Arctic Ocean, allows a reasonable 

dense water  transport at the sills to be maintained without a 
relaxation of this kind.  

Figure 4: Mean (1990-2004) AMOC in the North Atlantic for 
hindcast G70. Negative vaues are shaded grey and contour interval 
is 2 Sv. Fig. 6:
 

Also the freshwater balance and its effect on the deep water 
formation in the Labrador Sea seem to be critical in this respect. 
Further sensitivity experiments are underway to identify the 
critical model factors governing this behaviour.
3.3. Sea-ice
ORCA025 hindcasts show a decrease of the Arctic sea-ice area 
since the early 1980’s, as seen in satellite data. Arctic sea-ice area 
and concentration generally compare well with observations, 
in spatial patterns as well as integral values (Fig. 6, page 14). 
Sea-ice volume (not shown) is larger (and more realistic) in 
experiments using CORE turbulent fluxes (ice is too thin with 
ERA40). The simulation of Antarctic sea-ice is less satisfactory, 
with too little ice remaining in summer, and an overly large 
winter ice extent.
3.4. Long term variability
Hindcasts from the various integrations tend to simulate very 
comparable long term variabilities, i.e. an increase of the AMOC 
maximum (Fig. 7) in the 1980’s and early 1990’s and a significant 
decrease from the mid 1990’s. However, important year-to-year 
differences are observed which need to be explained.
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Fig. 7: Variation of the AMOC maximum in the North Atlantic in 
hindcasts G70, KAB001 and KAB002.
All hindcasts do a remarkable job in simulating the observed 
El Nino related variability (Fig. 8). However, the SST is biased 
warm (by a few tenths of a degree, but sometimes up to 1°C) 
when ERA40 the turbulent fluxes are used instead of CORE
.
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Fig. 8: Time evolution of the monthly mean ocean surface temperature 
(°C) in the Nino Box 3-4 in hindcasts G70, KAB001 and NOAA 
observations. Curve for the KAB002 run (not shown) is almost 
identical to KAB001.
Finally, it is obvious that applying a 3D restoring on T,S might 
have an impact on the simulated variability. This is illustrated 
in the Antarctic Circumpolar Current (ACC) transport (Fig. 9). 
Hindcasts without 3D restoring (G70 and KAB002) show that 
more than 20 years of spin-up are necessary before the ACC 
transport stabilises. Note that ACC transport will likely remain 
stronger (above 120 Sv) in KAB002 than in G70 (above 110 Sv) 
because of stronger winds in CORE. This spin-up phase does 
not exist when 3D T,S relaxation is applied at polar latitudes 
(beyond 50S) in KAB001. This strongly suggests that the spin-
up is due to the adjustment of the mass field at high southern 
latitudes. The long term variability is quite different in G70 and 
KAB001, e.g. the latter experiment does not show the decadal 
oscillations typical of G70. Although weak, this relaxation tends 
to seriously limit the low-frequency variability.
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Fig. 9: Mean transport (in Sv) at Drake Passage in hindcasts G70, 
KAB001, and KAB002.
4. Conclusion
Series of ~50-year hindcasts (of which a small part is described 
here) have been carried out with the DRAKKAR hierarchy of 
model configurations, which has allowed improvements in 
model numerics, parameterizations and surface forcing. The 
hybrid forcing using CORE radiation fluxes and precipitation 
fields with ERA40 turbulent variables (wind, air temperature 
and air humidity), referred to as the DRAKKAR Forcing Set #3 
(DFS3) is currently our best choice to obtain an AMOC of realistic 
strength with the ORCAii configurations. Comparison of CORE 
and DFS3 driven hindcasts is presently under investigation 
and already indicates new directions for improvements for the 
next forcing set (DFS4) now under construction. DRAKKAR 
hindcasts planned for 2007 will concern the model sensitivity 
to sea-ice parameters and freshwater fluxes, the objective being 
to completely remove any restoring to SSS. Hindcasts with 
the eddy-resolving configuration NATL12 will also begin. 
The DRAKKAR hindcast database is available upon request 
to research scientists outside the consortium. Additional 
information about DRAKKAR can be found on the project web 
site (www.ifremer.fr/lpo/drakkar).
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Fig. 1: ORCAii global configurations. The model domain and 
land-sea mask are shown for the 1⁄4° ORCA025 configuration 
(axes correspond to grid points). Colours show a SSH snapshot 
(in meter) on June 24, 1998 from one of the hindcast runs (G70), 
sea-ice cover being in white. Boxes show the domain decomposition 
on a large number of processors, ocean processors (not marked by a 
cross, 186 of those) being the only ones retained in the calculation. 
On vector computers a more moderate parallelization (typically up 
to 32 processors) is used.  The red box is the region where a 2-way 
grid refinement at 1/10-1/12°is being implemented.

From Barnier et al, page 8: Eddy-permitting Ocean Circulation Hindcasts of Past Decades

Figure 5: Evolution of the annual mean transport (in Sv) 
by density classes across the Denmark Strait. Negative 
values indicate a flow from the Nordic Seas into the 
Atlantic. The zero contour line is shown in white.

Fig. 6: Monthly mean sea-ice 
concentration and total area in 
November 1978 (left) from satellite 
observations (Sea Ice index, Fetterer 
and Knowles, 2002) and(right) from 
the  G70 hindcast.
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