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ABSTRACT: Submersed aquatic vegetation (SAV) is an important component of shallow water estuarine systems that
has declined drastically in recent decades. SAV has particularly high light requirements, and losses of SAV have, in many
cases, been attributed to increased light attenuation in the water column, frequently due to coastal eutrophication. The
desire to restore these valuable habitats to their historical levels has created the need for a simple but accurate manage-
ment tool for translating light requirements into water quality targets capable of supporting SAV communities. A pro-
cedure for calculating water quality targets for concentrations of chlorophyll and total suspended solids (TSS) is derived,
based on representing the diffuse attenuation coefficient for photosynthetically active radiation, Kd(PAR), as a linear
function of contributions due to water plus colored dissolved organic matter (CDOM), chlorophyll, and TSS. It is
assumed that Kd(PAR) conforms to the Lambert-Beer law. Target concentrations are determined as the intersection of
a line representing intended reduction of TSS and chlorophyll by management actions, with another line describing the
dependence of TSS on chlorophyll at a constant value of Kd(PAR). The validity of applying the Lambert-Beer law to
Kd(PAR) in estuarine waters was tested by comparing the performance of a linear model of Kd(PAR) with data simulated
using a more realistic model of light attenuation. The linear regression model tended to underestimate Kd(PAR) at high
light attenuation, resulting in erroneous predictions of target concentrations at shallow restoration depths. The errors
result more from the wide spectral bandwidth of PAR, than from irrecoverable nonlinearities in the diffuse attenuation
coefficient per se. In spite of the failure of the Lambert-Beer law applied to Kd(PAR), the variation of TSS with chlo-
rophyll at constant Kd(PAR) determined by the more mechanistic attenuation model was, nevertheless, highly linear. Use
of the management tool based on intersecting lines is still possible, but coefficients in the line describing the dependence
of TSS on chlorophyll at constant Kd(PAR) must be determined empirically by application of an optical model suitably
calibrated for the region of interest. An example application of the procedure to data from the Rhode River, Maryland,
indicates that approximately 15% reduction in both TSS and chlorophyll concentrations, or 50% reduction in chlorophyll
alone, will be needed to restore conditions for growth of SAV to levels that existed in the late 1960s.

Introduction
Submersed aquatic vegetation (SAV) is an im-

portant component of coastal ecosystems. It is be-
lieved that nearly 600,000 acres of SAV covered the
bottom of Chesapeake Bay in historic times, but
catastrophic declines occurred during the 1960s
and 1970s (Orth and Moore 1983). Coverage in
recent years has increased about 70% above the
lowest areal coverage of 40,000 acres recorded in
1984. Because of the ecological importance of SAV,
the Chesapeake Bay Program has set a goal to re-
store 114,000 acres of SAV throughout historically
vegetated areas of the Bay by the year 2005.

The principal factor believed to limit the distri-
bution of SAV is the availability of light at the plant
surface (Duarte 1991; Dennison et al. 1993). SAV
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in mesohaline and polyhaline estuaries appears to
require a long-term average of about 22% of sur-
face irradiance to survive, while that in oligohaline
and tidal freshwater regions appear to require c.
13% of surface irradiance (Batiuk et al. 1992; Den-
nison et al. 1993; Carter et al. 2000). A wide variety
of methods has been used to estimate the light re-
quirement of SAV, but the most reliable estimates
generally are determined by comparing in situ
depth distributions of SAV with the long-term me-
dian value of diffuse attenuation coefficient,
Kd(PAR), for downwelling photosynthetically active
radiation (PAR, 400 to 700 nm).

The diffuse attenuation coefficient is the empir-
ical descriptor of the penetration of cosine-weight-
ed downwelling irradiance underwater, i.e.,

Ed(Z) 5 Ed(0)exp[2Kd(PAR)Z] (1)

where Ed(Z) 5 downwelling cosine-weighted irra-
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diance (PAR) at depth Z, and Ed(0) 5 downwelling
cosine-weighted irradiance just beneath the air-wa-
ter interface. Let Zmax denote the maximum depth
of colonization of SAV. The 22% requirement is
based on the observed tendency for the dimen-
sionless product, ZmaxKd(PAR), to cluster around
1.5 (Duarte 1991; Dennison et al. 1993). Of course,
other factors influence the maximum depth of col-
onization by SAV (Koch 2001), especially light at-
tenuation at the leaf surface by epiphytic algae and
attached matrix of organic detritus and inorganic
silts and clays (Twilley et al. 1985; Kemp et al.
2000). Variability in the optical density of material
attached to the leaf surface may explain some of
the scatter in plots of Zmax against percentage of
incident light availability (Dennison et al. 1993).
Adequate penetration of light through the water
column, quantified by Kd(PAR), is a necessary but
not sufficient condition for colonization by SAV.

In order to take management action to restore
conditions that permit growth of SAV, it is neces-
sary to know how the value of Kd(PAR) depends
on the suspended and dissolved matter in the wa-
ter. The diffuse attenuation coefficient is referred
to as an apparent optical property (AOP), because
its value depends not only on the concentrations
of light attenuating components in the water, but
also on the angular distribution of the underwater
light field (Morel and Smith 1982). It is affected
by factors in addition to water quality, e.g., surface
waves, solar incidence angle, depth, and cloud cov-
er. Optical properties that depend only on the con-
tents of the water (i.e., that are independent of the
ambient light field) are referred to as inherent op-
tical properties (IOPs, Kirk 1994).

One goal in the field of hydrologic optics has
been to determine the relationship between AOPs
and IOPs (Mobley 1994). The IOPs most relevant
to the problem of determining water quality con-
centrations suitable for restoring SAV are the ab-
sorption coefficient, a, and the scattering coeffi-
cient, b. The absorption and scattering coefficients
can be expressed as the sum of contributions due
to different optically active constituents, and the
effect of each component is directly proportional
to its concentration: i.e., IOPs are additive and lin-
ear and thus obey the Lambert-Beer law. This is
not true generally of AOPs, such as Kd(PAR) (Kirk
1994). Nevertheless, the need exists in the man-
agement community for a diagnostic tool able to
accurately and quantitatively attribute light atten-
uation to the content of the water. Accuracy is
needed to assure that the actions taken to improve
water quality will result in sufficient reduction in
light attenuation to promote expansion of SAV,
while maintaining cost effectiveness by not dictat-
ing larger reductions than are actually necessary.

For a diagnostic tool to be useful to managers, it
needs to be accessible to non-specialists, able to
batch-process extensive water quality data sets, and
be usable with very limited optical data.

The simultaneous need for accuracy and ease of
use presents potentially conflicting requirements.
Models believed to faithfully represent the pro-
cesses of radiative transfer underwater are written
for monochromatic light [i.e., a complete spec-
trum must be simulated to determine Kd(PAR)]
and require specification of a, b, (functions of
wavelength), and the scattering phase function
(Mobley et al. 1993). Although extremely useful
for research problems, such as generating empiri-
cal relationships between IOPs and AOPs (Kirk
1984), such models are still too complex for use
in the water quality management community. At
the other extreme, some researchers have applied
the Lambert-Beer law to the diffuse attenuation co-
efficient by modeling Kd(PAR) as a linear function
of water quality concentrations (Lorenzen 1972;
Smith 1982; Verduin 1982; Stefan et al. 1983). Lin-
ear representation of Kd(PAR) may meet the ease-
of-use criteria, but the inherent inaccuracies in do-
ing so are as yet unquantified (c.f., Kirk 1994).

Gordon (1989) used a Monte Carlo model of an
ocean-atmosphere system to examine the severity
of violation of the Lambert-Beer law by narrow
waveband spectral irradiance in Case 1 waters, i.e.,
waters in which the optical properties are gov-
erned by phytoplankton pigments and their detri-
tal degradation products. He demonstrated that
the diffuse attenuation coefficient for narrow-band
irradiance obeyed the Lambert-Beer law to a high
degree of accuracy in Case 1 waters, provided the
measurements were divided by an easily calculated
distribution coefficient that corrects for the effects
of variation in sun angle, the relative proportion
of diffuse sky irradiance, and sea state. Extension
to Case 2 waters (in which the optical properties
are substantially affected by colored dissolved or-
ganic matter (CDOM) and non-algal particulate
matter) did not significantly increase errors as long
as waters with high concentrations of non-absorb-
ing particles were avoided (Gordon 1989). To ap-
ply the Lambert-Beer law to Kd(PAR) in situations
useful for setting water quality management goals
requires extension of the law to broadband irra-
diance, and application in waters with high con-
centrations of terrigenous suspended solids. The
errors incurred by doing so require further ex-
amination.

In this paper I use a series of models of decreas-
ing complexity and increasing ease of use to ex-
amine the severity of systematic errors incurred by
applying the Lambert-Beer law to Kd(PAR), partic-
ularly as they relate to the determination of water
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quality targets for restoring SAV. After a brief re-
view of optical models, I validate the performance
of the spreadsheet-based model of Gallegos (1994)
against a more realistic Monte Carlo model of ra-
diative transfer (Kirk 1989), and use the spread-
sheet model to generate pseudo-data for estima-
tion of a linear regression model. Analysis of the
linear regression representation indicates that a
single regression is prone to errors when used
across a broad range of water quality concentra-
tions. Improvements can be made by using sepa-
rate regressions for different target restoration
depths, provided information about spectral spe-
cific-absorption and scattering coefficients in the
different ranges is available.

Model Descriptions
Complete description of the equation of radia-

tive transfer and the models that solve it is beyond
the scope of this paper. It is still useful to review
the processes that attenuate light underwater to
better appreciate the divergence of the different
modeling approaches that have been taken, al-
though rigorous explanations are given in several
recent sources (Davies-Colley et al. 1993; Kirk
1994; Mobley 1994).

The equation of radiative transfer describes a
photon budget for monochromatic light within an
incremental solid angle (see, e.g., Fig. 1.6 in Kirk
1994). Photons traveling in a given direction are
lost by absorption and by being scattered in a dif-
ferent direction. Gains of photons within a solid
angle are due to scattering of photons that occurs
from all other directions into the solid angle being
considered. The scattering phase function, which
describes the probability distribution of scattering
angles, is needed to account for the fate of scat-
tered photons. Integration of the equation for an
incremental solid angle over all directions in 3 di-
mensions accounts for all losses of photons as
depth increases.

Mobley et al. (1993) compared different meth-
ods of solving the radiative transfer equations and
found that 7 different models provided consistent
predictions of irradiances, with Monte Carlo meth-
ods suffering somewhat from statistical fluctuations
in calculated quantities at great optical depth, due
to the small number of surviving photons. Errors
at great optical depth are not of concern in this
work, because of the emphasis here on attenuation
to the 22%, or at most, the 13% penetration depth.

Monte Carlo models of the radiative transfer
equation have the advantage that they are easy to
program, and the procedure is, in some respects,
analogous to the natural process of attenuation
(Kirk 1994). The processes of absorption and scat-
tering, which contribute to the attenuation of light,

are stochastic events that occur as a result of en-
counters between photons and absorbing and scat-
tering substances in the water. The values of the
absorption and scattering coefficients are measures
of the probability per unit distance of absorption
and scattering events. Similarly, the scattering
phase function describes the probability distribu-
tion of relative scattering angle, given that a scat-
tering event has occurred.

In a series of papers, Kirk (1981, 1984, 1989) has
used Monte Carlo modeling of the radiative trans-
fer equation to estimate approximate algebraic ex-
pressions relating various AOPs but especially dif-
fuse attenuation coefficient, to the IOPs, a and b.
One expression that is particularly useful because
of its simplicity and accuracy is

1
2 1/2K 5 [a 1 G(m )ab] (2)d 0m0

where m0 is the cosine of the solar zenith angle,
after accounting for refraction at the (assumed
flat) air-water interface, and G(m0) (5 g1m0 2 g2)
is a linear function that determines the relative ef-
fect of scattering on the total rate of attenuation.
Although entirely empirical, Eq. 2 is both highly
accurate and very general, applying over a wide
range both of solar incidence angles and of b :a
ratios (Kirk 1984, 1994).

As indicated above, a and b are functions of
wavelength, which complicates calculation of
Kd(PAR) using Eq. 2. Absorption spectra of certain
substances, such as CDOM, have simple spectral
shapes that can be described by a simple negative
exponential; but the absorption spectra of water
and of phytoplankton pigments are irregularly
shaped and are most conveniently expressed as
tabulated values. There is, therefore, no closed
form integration of Eq. 2 over the PAR waveband
to calculate averaged Kd(PAR).

Gallegos (1994) calculated Kd(PAR) by first pre-
dicting the spectrum of diffuse attenuation coeffi-
cient, Kd(l). This was done by multiplying concen-
trations of optical water quality parameters by their
experimentally determined specific-absorption
and specific-scattering spectra to estimate a(l) and
b(l), which were then substituted into Eq. 2. Then
by propagating the incident solar spectrum to a
reference depth, Z, according to Eq. 1 and nu-
merically integrating over wavelength, Kd(PAR) was
calculated as

1 PAR(Z)
K (PAR) 5 2 ln (3)d [ ]Z PAR(0)

The procedure is simple, fast, and easily adapted
to studying the relationship of Kd(PAR) to varia-
tions in optical water quality parameters, but its
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Fig. 1. Illustration of a procedure for calculating water qual-
ity targets for protection and restoration of SAV habitats. Target
(open circles) concentrations relative to current median con-
ditions (asterisk) are given as the intersection of lines defining
the minimum-light water quality requirement (bold line, Eq. 6)
and one of 3 management trajectories (dotted arrows, Eq. 7).

accuracy compared with mechanistic models of ra-
diative transfer has not been determined. I refer
to this simplified computational procedure as the
spectrally integrated algebraic summary (SIAS)
model.

At the lowest level of mechanistic realism is lin-
ear partitioning of the diffuse attenuation coeffi-
cient for PAR (Lorenzen 1972; Smith 1982; Ver-
duin 1982; Stefan et al. 1983). Such a representa-
tion might be written

Kd(PAR) 5 Kw 1 ky[CDOM] 1 kc[Chl] 1 ks[TSS]
(4)

where Kw 5 the (supposed) attenuation due to wa-
ter alone, and ky, kc, and ks are, respectively, spe-
cific-attenuation coefficients (i.e., attenuation per
unit concentration) of CDOM, chlorophyll, and to-
tal suspended solids (TSS). Equation 4 is a state-
ment of the Lambert-Beer law applied to Kd(PAR).

Linear partitioning of Kd(PAR) into contribu-
tions due to discrete factors treats the diffuse at-
tenuation coefficient as if it were an IOP, which it
is not (Kirk 1994). Doing so has several distinct
advantages for management purposes. If coeffi-
cients in Eq. 4 can be specified, then the percent-
age contribution of each water quality constituent
to the total attenuation can be calculated simply;
that is, the percent attenuation due to, e.g., chlo-
rophyll is given by 100·kc[Chl]/{Kw 1 kc[Chl] 1
ky[CDOM] 1 ks[TSS]}. Computations to this effect
can help managers rank the importance of reduc-
ing the different attenuating components.

A second advantage of applying the Lambert-
Beer law to Kd(PAR) is that it becomes possible to
obtain analytical expressions for combinations of
water quality concentrations that will result in a
particular value of Kd(PAR) that permits survival of
SAV to a particular depth strata (Gallegos and
Moore 2000). For ease of graphical presentation
in 2 dimensions, I assume that one component, in
this case CDOM, is relatively minor and invariant
compared with the other 2 parameters, and that
its effect can be combined with that of water to
yield a lumped parameter, K(W1CDOM). The proce-
dure is fully generalizable to 3 dimensions (e.g.,
Gallegos and Kenworthy 1996), and CDOM need
not be ignored in locations where it comprises an
important contribution to attenuation. Let flr 5 the
light requirement for SAV growth and survival ex-
pressed as a fraction of surface incident light (i.e.,
0.22 for mesohaline and polyhaline species, and
0.13 for oligohaline and tidal freshwater commu-
nities, Carter et al. 2000); and let Zmax 5 the target
protection or restoration depth for SAV. Then
combining Eqs. 1 and 4, we can write

2ln(f )lr 5 K 1 k [Chl] 1 k [TSS] (5)(W1DOC) c sZmax

Equation 5 can be rearranged to express linear
combinations of [Chl] and [TSS] that just meet
the flr requirement,

2ln(f ) 2 Z Klr max (W1CDOM)[TSS] 5
k Zs max (6)

kc2 [Chl]
ks

which defines a line with slope 5 2kc/ks, and
[Chl] 5 0 intercept of [2ln(f1r) 2 ZmaxK(W1CDOM)]/
ksZmax. Equation 6 thus defines a linear minimum-
light habitat requirement for SAV based on the
Lambert-Beer law.

The use of Eq. 6 for setting target water quality
goals is illustrated schematically in Fig. 1. If the
long-term median concentrations of chlorophyll
and TSS fall outside the triangular region enclosed
by the axes and Eq. 6 (i.e., the minimum-light wa-
ter quality requirement), then chlorophyll and/or
TSS must be reduced. Target concentrations can
be determined analytically by solving for the inter-
section of 2 lines. Three ways of determining target
concentrations are illustrated in Fig. 1. Let the
point defined by the existing long-term median
concentrations of chlorophyll and TSS be denoted
(mc, ms). Lines defining reduction strategies involv-
ing, respectively, reducing chlorophyll only, reduc-
ing TSS only, and reducing both chlorophyll and
TSS are given by
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TABLE 1. Formulae for coordinates of target concentrations of chlorophyll, [Chl], and suspended particulate matter, [SPM], deter-
mined by intersection of Eq. 6 with Eq. 7a–c. Last column gives conditions for obtaining a positive concentration as the intersection.

2ln(f ) 2 Z Klr max (W1CDOM)j 5 ; other symbols defined in text.
Zmax

Management Action [Chl] [SPM] Condition

Chlorophyll reduction only
j 2 k ms s

kc

ms j
m #s ks

SPM reduction only mc

j 2 k [Chl]c

ks

j
m #c kc

Projection to origin
m jc

(k m 1 k m )s s c c

m js
(k m 1 k m )s s c c

No restriction

Normal projection
k jc

2 2k 1 ks c

k js
2 2k 1 ks c

k jsm # m 1s ck kc s

and
k jsm $ (m 2 )s ck kc c

[TSS] 5 m (7a)s

[Chl] 5 m (7b)c

ms[TSS] 5 [Chl] (7c)
mc

A fourth reduction strategy (not shown in Fig. 1)
can be defined which is normal to Eq. 6. The nor-
mal line has a slope 5 ks/kc and passes through
point (mc, ms); it represents the shortest distance in
chlorophyll-TSS space from current conditions to
the minimum-light water quality requirement. Co-
ordinates defining the target concentrations deter-
mined by the intersections of Eq. 6 with Eq. 7a–c
are given in Table 1.

Such simplifications are useful for prioritizing
management efforts, provided the calculations are
reliable. In view of the known violation of the as-
sumption of linearity for AOPs, the degree of re-
liability of this assumption needs to be established.
I examine the magnitude of errors incurred by vi-
olation of the assumption of linearity after validat-
ing the SIAS model based on Eq. 2 (Gallegos 1994)
against Monte Carlo modeling of the radiative
transfer equation.

DESCRIPTION OF DATA AND MODIFICATIONS TO
SIAS MODEL

The model of Gallegos (1994) requires specific-
absorption spectra of chlorophyll, CDOM, and
TSS, as well as the specific-scattering coefficient of
TSS. Gallegos (1994) used turbidity as the measure
of scattering coefficient, and absorption coefficient
at 440 nm measured in a spectrophotometer on
0.2-mm filtrate (i.e., g440) as a measure of CDOM.
The version of the model used in this work was
modified to make it amenable to the water quality
data available from the Chesapeake Bay Water

Quality Monitoring Program (U.S. Environmental
Protection Agency, www.chesapeakebay.net/data/).
Their monitoring data include chlorophyll, dis-
solved organic carbon (DOC), and total and fixed
suspended solids, but not turbidity. Therefore it
was necessary to modify the functions that param-
eterize absorption by CDOM, absorption by non-
algal particulate matter, and scattering by suspend-
ed solids.

For lack of a more suitable measure of CDOM
in the Chesapeake Bay Water Quality Monitoring
Program, a modification of Eq. 5 in Gallegos et al.
(1990) was used to calculate g440 from measure-
ments of DOC: g440 5 0.167[DOC]. To express ab-
sorption by non-algal particulate matter in terms
of TSS, 34 absorption spectra of particulate matter
captured on GF/F glass fiber filters and extracted
in methanol to remove phytoplankton pigments
were normalized to the concentration of TSS.
These were individually fit to the function

a (l)d 5 s exp[2s (l 2 400)] 1 s (8)400 d blTSS

where ad(l) 5 spectral absorption by non-algal
particulate matter, sbl 5 the long-wave specific-ab-
sorption coefficient, s400 scales the absorption am-
plitude at short wavelengths, and sd determines the
rate of exponential decrease to sbl. In Eq. 8, ad(l)
and TSS are measurements, and s400, sd, and sbl

are estimated parameters. Mean values of the es-
timated parameters, s400, sd, and sbl, are given in
Table 2, along with estimates of the variability ob-
served.

Parameterization of scattering coefficient in
terms of TSS is based on the observation that scat-
tering coefficient frequently scales with turbidity
measured in (NTU) with a constant near unity
(Kirk 1980; Weidemann and Bannister 1986; Vant
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TABLE 2. Means, standard deviations, minima, and maxima of
parameters describing absorption by non-algal particulate mat-
ter (Eq. 8) in the Rhode River, Maryland. Statistics are based
on 34 water samples filtered onto GF/F filter and scanned in
an integrating sphere interfaced to an EG&G Gamma spectral
radiometer.

s400 (m2 g21) sbl (m2 g21) sd (nm21)

Mean
Standard deviation
Minimum
Maximum

0.24
0.11
0.096
0.31

0.0305
0.0133
0.0098
0.0621

0.0164
0.0021
0.0124
0.0196

Fig. 2. a) Relationship between turbidity (a surrogate for
scattering coefficient) and total suspended solids concentration
in Chincoteague Bay, Maryland (open circles) and the Rhode
River, Maryland (filled squares). b) Relationship between total
suspended solids and chlorophyll.

1990). A regression analysis of turbidity against
TSS using data from the Rhode River and Chin-
coteague Bay (Gallegos unpublished) was used to
estimate scattering coefficient, from TSS (Fig. 2a).
The modified treatment represents scattering as

550
b(l) 5 0.32[TSS] (9)1 2l

where the 550/l term introduces the inverse wave-
length dependence suggested by Morel and Gentili
(1991).

In order to use the SIAS model of Gallegos
(1994) with TSS as one of the optical water quality
input parameters, it is important to examine the
interrelationships between TSS and other inputs,
so that unrealizable combinations of the 2 are not
used as inputs in the model. This is especially true
for chlorophyll, which is itself part of the suspend-
ed particulate matter. Total suspended solids con-
sist of the dry weight of all particulate matter in a
sample, including clay, silt, and sand mineral par-
ticles, living phytoplankton and heterotrophic
plankton, and particulate organic detritus. Cur-
rently it is difficult to distinguish optically the ef-
fects of mineral and non-algal particulate matter,
in part due to insufficient attention paid to optical
effects of inorganic particulate matter (Mobley
1994). The similar relationships between turbidity
(scattering) and TSS in Fig. 2a occurs despite a
much greater contribution of phytoplankton to the
suspended material in the Rhode River compared
with Chincoteague Bay (Fig. 2b). Phytoplankton
contribute to scattering on a dry weight basis about
the same as inorganic suspended solids and organ-
ic detritus. The generality of these observations is
uncertain. It is likely that relationships as precise
as these would be difficult to obtain if the geo-
graphic extent or length of time covered were in-
creased, and different instruments and standards
were employed.

As noted above, phytoplankton are part of the
suspended particulate load of any water sample.
TSS and chlorophyll cannot be independent be-
cause phytoplankton contribute to the particulate

organic matter in a sample. Upon combustion, all
organic matter in a sample is oxidized, leaving be-
hind the mineral component and ash of the or-
ganic fraction. The fraction remaining after com-
bustion is referred to as fixed suspended solids
(FSS), and the difference TSS-FSS is called total
volatile suspended solids (TVSS).

FSS and TVSS along with particulate organic car-
bon (POC) have been measured at the Virginia
tidal tributary and mainstem stations of the Ches-
apeake Bay Water Quality Monitoring Program.
The relationship between TVSS and POC is very
noisy (Fig. 3a), but on average, POC is about 30%
of TVSS. This estimate is within expected limits,
being larger than that of living phytoplankton
(26%, Sverdrup et al. 1942) and lower than that
of carbohydrate (37%). Because so much of POC



Water Quality Targets for SAV 387

Fig. 3. a) Concentration of total volatile suspended solids
(TVSS) plotted against particulate organic carbon (POC) for
Virginia tidal tributary stations, 1984–1996. Line shows estimate
of TVSS as POC/0.3. b) Relationship of POC to chlorophyll
concentration for Virginia tidal tributary stations. Lines bracket
approximate contribution of phytoplankton chlorophyll to POC
based on a range of phytoplankton carbon-to-chlorophyll ratios
from (dashed line) 20 to (solid line) 80 mg C (mg chl)21.

is heterotrophic and detrital, it is expected that a
plot of POC against phytoplankton chlorophyll will
display considerable scatter (Fig. 3b), but that dur-
ing sudden phytoplankton blooms, phytoplankton
might comprise the major component of carbon
in a sample. Carbon-to-chlorophyll ratios vary
widely in phytoplankton; a line with a slope rang-
ing from about 20 to 80 mg C (mg chl a)21 pro-
vides a lower bound of most of the points in Fig.
3b, a range well within physiological limits (Geider
1987). Choosing 40 mg C (mg chl a)21 (the geo-
metric mean of 20 and 80) as a representative C:
chlorophyll ratio, and using the 30% POC:TVSS
ratio of Fig. 2a, the minimum contribution of phy-

toplankton chlorophyll to TSS can be estimated as
0.04[Chl]/0.3, where the 0.04 results from the
conversion of mg to mg chl l21. Thus, the line de-
fined by [TSS] 5 0.04[Chl]/0.3 will generally be a
lower bound for most observations of chlorophyll
and TSS, consisting of instances when phytoplank-
ton comprise nearly all of the suspended particu-
late matter.

When using the modified model with simulated
input water quality parameters, the value of TSS
used in Eqs. 5 and 6 is generated from assumed
independent contributions due to FSS, non-algal
volatile suspended solids, and a phytoplankton
component given as above. A single set of coeffi-
cients in Eqs. 5 and 6 is used to account for the
optical effect of each component, though the pos-
sibility exists to treat them separately, when infor-
mation on the specific-absorption and scattering
spectra of each component becomes available.

Note also that inclusion of phytoplankton chlo-
rophyll in the suspended particulate matter means
that reduction in chlorophyll by management ac-
tion entails a proportionate reduction in TSS by at
least the amount of the dry weight of phytoplank-
ton, estimated above as 0.04[Chl]/0.3. The modi-
fication to target concentrations produced by in-
clusion of this effect is given by Gallegos and
Moore (2000).

Results and Discussion

VALIDATION OF THE SIAS MODEL

The Monte Carlo model used to solve the radi-
ative transfer equations in this work was the non-
spectral version used by Kirk (1989). Minor mod-
ifications were made to allow simple input of op-
tical properties specific to the analyses undertaken
in this work. I tested my implementation of the
model by attempting to reproduce Kirk’s (1984)
values for the coefficients g1 and g2 (see definition
of terms in Eq. 2) for the penetration of light from
the surface to the 1% light level. I conducted 432
runs of the model, allowing a to vary from 0.5 to
4 m21, and b to vary from 0.5 to 40 m21, encom-
passing a range of b :a ratios from 0.5 to 20. Using
least squares estimation, I found g1 5 0.430 and g2

5 0.194 compared with Kirk’s values of 0.425 and
0.190, respectively. G(m0) plotted against m0 for the
2 sets of coefficients were virtually indistinguish-
able from one another (data not shown), and
therefore my implementation of the computer
code appears equivalent to Kirk’s (1984).

I then used the modified SIAS model to calcu-
late simulated absorption and scattering spectra
from 400 to 700 nm at 5-nm intervals for 6 widely
differing water types for use in the Monte Carlo
model of Kirk (1989). The assumed water quality
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TABLE 3. Assumed water quality concentrations used to simulate 6 absorption and scattering spectra for comparing spreadsheet
model with Monte Carlo model of radiative transport. DOC 5 dissolved organic carbon; Chl 5 chlorophyll a, TSS 5 total suspended
solids, FSS 5 fixed suspended solids, and HDPOC 5 heterotrophic and detrital particulate organic carbon. TSS was calculated by
equation:

0.04[Chl] 1 HDPOC
TSS 5 FSS 1 .

0.3

Water Type
Depth
(m)

DOC
(mg 121)

Chl
(mg m23)

TSS
(mg 121)

FSS
(mg 121)

HDPOC
(mg 121)

Clear coastal
Average estuarine
Turbid
Eutrophic
CDOM stained
Non-absorbing particles

7
5
2
2
2
2

1.75
2
3
3

g440 5 8 m21*
0

4
10
12
90
4
0

4.87
9.67

48.27
18.33
4.87

20**

3.5
5

40
3
3.5

20

0.25
1
2
1
0.25
0

* Model was modified for CDOM-stained simulation to calculate absorption by CDOM directly from absorption coefficient of dis-
solved matter at 440 nm.

** Specific scattering at 550 nm was changed from 0.31 to 0.5 m2 g21 and specific absorption coefficient set to 0 at all wavelengths
to simulate non-absorbing, highly scattering particles.

conditions are given in Table 3, and the simulated
diffuse attenuation spectra are shown in Fig. 4a.
Scattering spectra were simulated according to Eq.
8 using values of TSS given in Table 3. For each
simulated water type a Monte Carlo simulation
with each of 61 combinations of absorption and
scattering coefficient was performed, covering the
visible spectrum from 400 to 700 nm in 5-nm in-
crements. From these, reference spectral diffuse at-
tenuation coefficients, Kd(l), were calculated from
the log-linear decrease in number of photons with
depth. These were compared with values calculat-
ed in the SIAS model according to Eq. 2. The num-
ber of photons remaining at the bottom of the wa-
ter column (corrected for the cosine of the direc-
tion of propagation) was summed, and the log-
transformed sum was used to calculate the average
{Kd(PAR)} over the water column as {Kd(PAR)} 5
2(1/Z)ln(# of photons remaining/# of photons
introduced), analogous to Eq. 3 (Fig. 4b). These
reference {Kd(PAR)} values were compared with
values calculated in the SIAS model after numeri-
cal integration of the spectrum and application of
Eq. 3.

Both Kd(l) calculated in the SIAS model and
{Kd(PAR)} calculated by numerical integration
agreed very well with the reference values calcu-
lated by full Monte Carlo simulation of the radia-
tive transfer equations (Fig. 4b). This degree of
agreement is a direct result of the empirical accu-
racy of Eq. 2 in summarizing the outcome of the
radiative transfer process. In the SIAS model, none
of the information about the angular distribution
of the underwater light field is retained, as it is
with the Monte Carlo simulation. Nevertheless, Fig.
4b indicates that the SIAS model is an accurate
tool for translating information on concentrations
of optical water quality parameters into estimates

of fraction of irradiance penetrating to particular
depths of interest. The principal limitation in such
predictions is, therefore, the accuracy of the spe-
cific-absorption and scattering spectra, and not the
simplifications inherent in the use of Eq. 2 and
numerical integration over wavelength to calculate
Kd(PAR) from a and b.

ASSESSMENT OF NONLINEARITY IN Kd(PAR)
Gordon (1989) demonstrated that, after apply-

ing a simple factor to correct for solar incidence
angle, diffuse sky irradiance, and surface waves,
narrow-band Kd(l) obeys the Lambert-Beer law in
Case 1 waters to a high degree of accuracy. To what
extent can the same be said of broadband
Kd(PAR), particularly in Case 2 waters? I addressed
this question by using the spreadsheet implemen-
tation of Eqs. 2 and 3 together with a software
package (Crystal Ball) that permits assignment of
random distributions to values in spreadsheets, in
this case, the concentrations of DOC, chlorophyll,
and TSS. This procedure generated pseudo data
for assessment of nonlinearity, with the only error
in simulated Kd being that expected on the basis
of Fig. 4b. Input distributions for the water quality
data were based on an analysis of data from the
Chesapeake Bay Water Quality Monitoring Pro-
gram, their station 3.3C (Fig. 5). This station is in
the mesohaline zone and is the closest mainstem
station to the Rhode River, Maryland, the location
where the optical model of Gallegos (1994) was
calibrated. This procedure produced a close match
between simulated and observed water quality dis-
tributions (Fig. 5a–c) as well as the dependent var-
iable, Kd(PAR) (Fig. 5d). The simulated water qual-
ity input values therefore represent a realistic Case
2 scenario, and the simulated Kd contain the full
nonlinear dependence inherent in Eqs. 2 and 3,
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Fig. 4. a) Simulated spectra of diffuse attenuation coeffi-
cient associated with water types with water quality conditions
given in Table 3: bold solid line 5 clear coastal waters; bold
dashed line 5 non-absorbing particles; thin dashed line 5 av-
erage estuarine; dotted 5 eutrophic; dot-dashed 5 turbid; thin
solid 5 CDOM dominated. b) Values of spectral diffuse atten-
uation coefficient (squares) and Kd(PAR) (circles) calculated by
modified spreadsheet model compared with full simulation of
the radiative transport equations by Monte Carlo model.

without variability due to imprecise measurements
or to changing optical properties.

To assess nonlinearity I evaluated the regression
of Kd against simulated concentrations of DOC,
chlorophyll, and TSS, examined the dependence
of specific-attenuation coefficients on input water
quality concentrations, and quantified the magni-
tude of errors in estimated target water quality con-
centrations. We can isolate issues relating to appli-
cation of the Lambert-Beer law to Kd in Case 2
waters from those involving application of the law
to broadband irradiance (PAR) by separately eval-

uating nonlinearity in narrow band Kd(l) and in
Kd(PAR).

I chose 555 nm as the wavelength for comparing
narrow band Kd with Kd(PAR) because, in Case 2
waters, the minimum attenuation occurs in the
green portion of the spectrum. This results from
the competing effects of absorption by CDOM and
by TSS in the blue, and by chlorophyll and water
itself in the red regions of the spectrum. Kd(555)
therefore tends to be lower than Kd(PAR), but is
nevertheless a close approximation of Kd(PAR) in
these simulations (Fig. 6) and is a suitable wave-
length for isolating the effects of Case 2 water qual-
ity conditions from those due to consideration of
broadband (i.e., PAR) irradiance.

The correction for the geometry of the under-
water light field employed by Gordon (1989) in-
cluded terms for the angle of incidence of the di-
rect solar beam, the relative proportion of diffuse
sky versus direct sun irradiance, and wind-driven
gravity waves. Because the Monte Carlo model of
Kirk (1984) and the algebraic summary equations
derived from it (Eq. 2) do not include diffuse sky
irradiance or the effects of surface waves, Gordon’s
(1989) correction factor for the diffuse attenuation
coefficients simulated in this work reduces to cor-
rection for the angle of incidence of the direct so-
lar beam, and is equivalent to multiplication of Kd

by the cosine of the refracted solar incidence an-
gle, m0. The utility of this correction factor to re-
store linearity between simulated diffuse attenua-
tion coefficients and water quality concentrations
was determined for both narrow and broadband
irradiance.

Performance of the Regression
Coefficients of determinations of linear regres-

sions between simulated diffuse attenuation coef-
ficients (with and without correction for solar in-
cidence angle) and water quality concentrations
varied from c. 0.96 to . 0.99 (Table 4). The r2 was
lowest for Kd(PAR) uncorrected for solar incidence
angle, and highest for m0Kd(555). Multiplication by
m0 was effective at reducing the standard errors of
the regression to about half their values without
correction (Table 4). The standard errors of the
regression are about 6% of the simulated mean for
Kd, and about 3–4% of the simulated means for
m0Kd.

Residuals of the regressions increased in mag-
nitude as a function of the simulated value for both
narrow band Kd(555) and broadband Kd(PAR)
(Fig. 7). Positive and negative residuals were fairly
symmetrically distributed throughout the simulat-
ed range for narrow band irradiance (Fig. 7a,b).
Correction for solar incidence angle reduced the
magnitude of maximal residuals from about 14%
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Fig. 5. Distributions of simulated (squares, solid line) and observed (circles, dashed line) water quality variables at Chesapeake
Bay mainstem station 3.3C: a) dissolved organic carbon (DOC); b) chlorophyll a; c) total suspended solids (TSS); and d) Kd(PAR).
Simulated DOC, chlorophyll, and TSS were used as inputs to the spreadsheet model, and Kd(PAR) is the output.

TABLE 4. Regression statistics for linear regressions of simu-
lated diffuse attenuation coefficients for narrow band, Kd(555),
and broadband, Kd(PAR), against water quality concentrations.
Data were simulated using spreadsheet model with water quality
concentrations drawn from random distributions given in Fig.
5. Definitions of symbols given in text. Units: KW 5 m21; ky 5
m2 (g DOC)21; kc 5 m2 (mg chl a)21; ks 5 m2 (g TSS)21. r2

(dimensionless) is the coefficient of determination; SE (m21) is
the standard error of regression; and m0 (dimensionless) is the
cosine (relative to zenith) of refracted solar incidence angle.

Dependent
Variable KW ky kc ks r2 SE

Kd(555)
m0Kd(555)
Kd(PAR)
m0Kd(PAR)

0.0796
0.0665
0.3315
0.2693

0.0554
0.0461
0.0507
0.0429

0.0121
0.0103
0.0122
0.0105

0.0795
0.0621
0.0778
0.0644

0.9745
0.9911
0.9617
0.9815

0.0574
0.0275
0.0725
0.0408

Fig. 6. Plot of simulated values of diffuse attenuation coef-
ficient (squares) for narrow-band irradiance at 555 nm,
[Kd(555)], against simulated diffuse attenuation coefficient for
broadband irradiance, Kd(PAR); solid line 5 line of equality.
The close correspondence between the two indicate that 555
nm is a suitable wavelength for isolating effects of broadband
versus narrow band irradiance from those relating to Case 2
waters on violation of the Lambert-Beer law.

of simulated values (Fig. 7a) to about 8% (Fig. 7b).
The magnitude of maximal residuals was similar
between narrow band and broadband Kd (cf., Fig.
7a,c). Correction of broadband Kd for solar inci-
dence angle produced a smaller reduction in mag-
nitude of residuals than for narrow band irradi-
ance (cf., Fig. 7c,d). Some positive correlation be-
tween residual and simulated values was present in
all regressions, though it was substantially reduced
by correction for solar incidence angle, and more
so for Kd(PAR) than for Kd(555).
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Fig. 7. Residuals of diffuse attenuation coefficient predicted by linear regression plotted against simulated value: (a) narrow band
irradiance (555 nm); (b) narrow band irradiance, corrected for solar incidence angle; (c) broadband irradiance, PAR; and (d)
broadband irradiance, corrected for solar incidence angle. Dotted reference lines are 14% of simulated value in (a) and (c), and 8%
in (b) and (d). r is the correlation coefficient between residual and simulated value. Coefficients of regressions are given in Table 4.

Data Dependence of Specific-Attenuation Coefficients
Keeping in mind that the simulations are free of

observational errors and that the optical properties
of CDOM, phytoplankton, and TSS are assumed to
be invariant, the specific-attenuation coefficients,
calculated as above (Table 4) by linear regression
of simulated Kd against water quality concentra-
tions would be the same for any simulated set of
data if the process were truly linear. The depen-
dence of calculated specific-attenuation coeffi-
cients on the particular range of water quality con-
centrations used in the simulation gives one indi-
cation of the severity of potential errors incurred
by wrongly applying the Lambert-Beer law to Kd.

Specific-attenuation coefficients were deter-
mined from data simulated to match water quality
conditions along a north-to-south transect in main-
stem Chesapeake Bay (Fig. 8). Water quality data
were obtained from the Chesapeake Bay Program
website, http://www.chesapeakebay.net/data/.
Concentrations of DOC differed only slightly
among stations (Fig. 8a), whereas distributions of
chlorophyll (Fig. 8b) and TSS (Fig. 8c) showed
marked differences that might be capable of af-

fecting regression coefficients of Kd against water
quality concentrations. Water quality at the north-
ernmost station, CB2.2, is dominated by freshwater
flow of the Susquehanna River, and therefore has
the highest concentrations of TSS and, due to
washout, the lowest concentrations of chlorophyll.
Chlorophyll concentrations peak at the mesoha-
line station, CB3.3C, and decline down estuary
(Fig. 8b). Concentrations of TSS are minimal at
the southernmost Maryland station, CB5.2, where-
as concentrations of TSS at the York River (Virgin-
ia) polyhaline segment (YRKPH) showed more riv-
erine characteristics, resembling the upper bay
CB2.2 (Fig. 8c).

For all locations, coefficients of determination of
the regressions used to determine specific-attenu-
ation coefficients were lowest for Kd(PAR) than for
any of the other quantities considered, and ranged
from 0.87 to 0.98 (Table 5). Data characteristic of
station CB5.2 produced the lowest r2 (Table 5),
due primarily to the low values and narrow range
of TSS concentrations (Fig. 8b). The most variable
coefficient was the intercept, Kw, with values rang-
ing from 0.33 to 0.55 m21. The lowest occurred for
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Fig. 8. Frequency distributions for optically important water
quality parameters along a transect of stations in Chesapeake
Bay, chosen to represent a range of salinity zones: CB2.2 5
northern bay, oligohaline; CB3.3C 5 Chesapeake Bay Bridge,
mesohaline; CB5.2 5 Maryland-Virginia border, mesohaline;
YRKPH 5 Mouth of York River, Virginia, polyhaline. Distribu-
tions are for (a) dissolved organic carbon (DOC), (b) phyto-
plankton chlorophyll, and (c) total suspended solids (TSS).

data with distributions resembling station CB5.2,
and the highest for YRKPH and CB2.2, the 2 sta-
tions with the highest simulated concentrations of
TSS (Fig. 8c). Also highly variable was the coeffi-
cient kc, which ranged from 0.0122 to 0.0187 m2

(mg chl a)21 (Table 5). The lowest value was pro-
duced by data characteristic CB3.3C, the station
with the largest mean and widest range of chloro-
phyll concentrations.

Errors in Estimated Water Quality Targets
Variability in the specific-attenuation coefficients

for PAR calculated from simulated error-free data
gives cause to doubt whether the Lambert-Beer law
can be applied reliably to PAR. This is important
because it is measurements of PAR that are avail-
able to managers for determining water quality tar-
gets for SAV restoration. Noting that Eq. 6 is in-
tended to describe the relationship between TSS
and chlorophyll that maintains Kd(PAR) at a con-
stant value, we can compare the linear represen-
tation with a set of ordered pairs of TSS and chlo-
rophyll that maintain a constant Kd(PAR) deter-
mined numerically in the nonlinear SIAS model
(Fig. 9a). For generating the numerically deter-
mined curves in Fig. 9a, the values of DOC and m0

were held constant at their mean values, and the
solver routine in the spreadsheet software was used
to obtain the value of TSS that gave the required
Kd(PAR) for an array of assumed values of chlo-
rophyll concentrations. Curves obtained in this way
do not depend on application of the Lambert-Beer
law, and require no a priori assumption about the
shape of the minimum-light water quality require-
ment.

Two observations are apparent in this compari-
son. First, the minimum light requirements deter-
mined by the linear regressions differ substantially
from those determined by numerical solution of
the SIAS model (Fig. 9a). Minimum light require-
ments determined by linear regression are too lax
for the 0.5-m and 1.0-m restoration depths, but in-
distinguishable for the 2-m restoration depths.
This pattern results from failure of the Lambert-
Beer law, as seen by the tendency of the linear re-
gression to overestimate Kd(PAR) at Kd(PAR) , 1
m21, and to underestimate at Kd(PAR) . about 1.5
m21 (Fig. 7c). Second, even though the Lambert-
Beer law has failed when applied across the com-
plete range of Kd(PAR), curves of constant
Kd(PAR) determined by numerical solution in the
SIAS model (the bold lines in Fig. 9a) are never-
theless highly linear. This near linearity is main-
tained, in the case of the 0.5-m restoration depth,
over a wide range of chlorophyll and TSS concen-
trations (Fig. 9a).

If we select the previously simulated data, in
which [DOC] and m0 were allowed to vary, for a
narrow range of Kd(PAR) such that 1.492 ,
Kd(PAR) , 1.537 (i.e., percent of incident light at
1 m between 21.5 and 22.5), the points demon-
strate scatter about the empirically determined
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TABLE 5. Specific-attenuation coefficients determined from data simulated to match statistical distributions along a north-to-south
transect along the mainstem Chesapeake Bay. Coefficients were estimated by linear regression of diffuse attenuation coefficient for
PAR, Kd(PAR), against simulated concentrations of DOC (ky), chlorophyll (kc), and TSS (ks). KW 5 intercept of the regression. Units;
ky 5 m2 (g DOC)21; kc 5 m2 (mg chl a)21; ks 5 m2 (g TSS)21; and KW 5 m21. r2 5 coefficient of determination; SE 5 standard error
of regression.

Station KW ky kc ks r2 SE

CB2.2
CB3.3C
CB5.2
YRKPH
Mean
Std. dev.
c.v. (%)

0.5483
0.3315
0.3347
0.5338
0.4371
0.1202

27.5

0.0370
0.0507
0.0504
0.0503
0.0471
0.0067

14.3

0.0187
0.0122
0.0167
0.0141
0.0154
0.0029

18.5

0.0756
0.0778
0.0954
0.0737
0.0806
0.0100

12.4

0.9595
0.9617
0.8720
0.9803

0.1567
0.0725
0.0970
0.1800

line, but the additional variability reveals no sys-
tematic nonlinearity (Fig. 9b, circles). Most of the
points selected in this way fall below the line de-
termined by application of the regression (Fig. 9b,
thin line). Selecting for a narrow range of
m0Kd(PAR) (Fig. 9b, squares) indicates that much
of the variability may be reduced by correction for
the angle of incidence. The remaining scatter
about the numerically-estimated minimum light re-
quirement line is due to variability of DOC, and is
non-systematic about the line established using the
mean concentration.

An attempt to select data from the Chesapeake
Bay Water Quality Monitoring Program (their sta-
tion 3.3C) for a similarly narrow range of Kd(PAR)
yielded 4 observations out of 180 records over a
10-yr period (Fig. 9b, plus signs). The observed
data are both too sparse and too noisy to be useful
for establishing minimum-light water quality re-
quirements in Chesapeake Bay. The source of the
noise in observed data will be examined elsewhere.

Failure of the Lambert-Beer law to apply to
Kd(PAR) in Case 2 waters does not automatically
invalidate the approach for obtaining SAV water
quality targets outlined in Fig. 1. It does indicate
that the minimum-light water quality requirements
must be obtained empirically by separate applica-
tion of an optical model for each restoration depth
and fractional light requirement, rather than by
application of a single regression equation. The re-
vised procedure consists of estimating a slope,
f(Zmax), and intercept, S0(Zmax), in a linear relation
between TSS and chlorophyll analogous to Eq. 6,
i.e., [TSS] 5 S0(Zmax) 2 f(Zmax)[Chl]. The slope
and intercept are estimated from the ‘data’ used
to generate each of the bold lines in Fig. 9a.

Note that the coefficients in the regression de-
pend explicitly on the restoration depth, and no
longer depend explicitly on a unique set of specif-
ic-attenuation coefficients presumed to apply to all
potential restoration depths (i.e., Eq. 6). This is
not necessarily a disadvantage, since the applica-
bility of the Lambert-Beer law (Eq. 4, from which

Eq. 6 was derived) was in question from the outset.
The value of Eq. 6 lies more in suggesting a poten-
tially useful approach than it does in providing a
mechanistic representation of the attenuation pro-
cess. The SIAS model was shown here to be highly
consistent with a fully mechanistic model of radi-
ative transfer (Fig. 4). Therefore the minimum
light water quality requirements generated from it
should be as reliable as the specific-absorption and
scattering spectra upon which it is based. Optical
properties of the particulate material may be ex-
pected to vary with the source of the material, with
spatial variations due to changing influence of
freshwater versus marine particulates accounting
for large, persistent differences in coefficients be-
tween regions. Coefficients S0 and f for both the
22% (mesohaline and polyhaline communities)
and the 13% (oligohaline and tidal freshwater
communities) light requirements are given in Ta-
ble 6. Until a more comprehensive spatial analysis
of optical properties is done, these coefficients
must be based on the SIAS model calibrated for
the Rhode River, Maryland, a tributary in the me-
sohaline zone of Chesapeake Bay. Determination
of regionally customized coefficients has been
identified as a high priority for restoration of SAV
in the Chesapeake region (Moore et al. 2000). A
spreadsheet for performing the calculations using
coefficients determined here (Table 6) is available
at www.chesapeakebay.net/cims/.

AN EXAMPLE APPLICATION

The Rhode River estuary, a tributary embayment
on the western shore of Chesapeake Bay in Mary-
land, once had an abundant community of SAV
(Southwick and Pine 1975) that disappeared
through the decade of the 1970s. Specific-absorp-
tion and scattering spectra used in the SIAS model
for calculating Kd(PAR) from water quality mea-
surements were based on measurements in this sys-
tem (Gallegos et al. 1990; Gallegos 1994).

Concentrations of suspended solids and phyto-
plankton chlorophyll have been monitored regu-
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Fig. 9. a) Comparison of minimum-light water quality re-
quirements calculated by (thin lines) application of Eq. 6 (de-
rived by applying the Lambert-Beer law to the diffuse attenua-
tion coefficient for PAR) with those calculated by numerical
solution in the spreadsheet optical model, which does not re-
quire the assumption of the Lambert-Beer law. Numbers near
lines give target restoration depths. Dotted line is approximate
contribution of phytoplankton chlorophyll to total suspended
solids (TSS). b) Effect of variability in simulated solar incidence
angle and concentration of DOC on estimation of minimum-
light water quality requirements for SAV growth to 1 m: open
circles are concentrations of chlorophyll and TSS selected from
the simulated data such that 1.492 # Kd(PAR) # 1.537; filled
squares are concentrations selected such that 1.238 # m0Kd #
1.276 (i.e., median m0 5 0.83). Correction for solar incidence
angle reduces scatter about empirically calculated minimum-
light water quality requirement. Data from the Chesapeake Bay
Program (CBP) Water Quality Monitoring Program from station
3.3C selected for the same range of Kd (plus signs) yielded 4
observations, illustrating the difficulty in attempting to establish
such limits from measured data. Bold and thin lines as in (a)
are for 1 m restoration depth. Dotted line as in (a).

TABLE 6. Slope, f, and intercept, S0, in the regression of total
suspended solids against chlorophyll concentration, that pro-
duce lines of constant diffuse attenuation coefficient, for meet-
ing minimum light habitat requirements for growth of sub-
mersed aquatic vegetation to depths of 0.5, 1.0, and 2.0 m:
[TSS] 5 S0 2 f[Chl]. Regression coefficients were determined
as a linear fit to pairs of chlorophyll and suspended solids con-
centrations determined by numerical solution of the spread-
sheet model of diffuse attenuation coefficient. Units of S0 5 g
TSS m23; f 5 g TSS (mg chl a)21. Thirteen percent light re-
quirements are for tidal fresh and oligohaline areas; 22% light
requirements are for mesohaline and polyhaline areas.

Zmax

13% Light Requirement

S0 f

22% Light Requirement

S0 f

0.5 m
1.0 m
2.0 m

41.054
17.949
6.595

0.1810
0.1830
0.1800

27.791
11.540
3.611

0.1874
0.1905
0.1908

Fig. 10. Application of the water quality target estimation
procedure to data from the Rhode River, Maryland. Minimum-
light water quality requirement (bold line) was calculated em-
pirically from the spectrally integrated model of diffuse atten-
uation. Target concentrations (open circles) of chlorophyll a
and total suspended solids (TSS) are calculated as the intercept
of the minimum-light water quality requirement with manage-
ment options (thin lines) that would reduce (horizontal line)
chlorophyll only or (diagonal line) chlorophyll and TSS from
their current long term median concentrations (asterisk). An-
nual median concentrations (plus signs) are determined on
data selected for SAV growing season; April through October.

larly since 1986. Annual growing season (April–Oc-
tober) medians of chlorophyll and TSS from 1986–
1998 are plotted in relation to the 1 m minimum-
light requirement line (Table 6) in Fig. 10. Ten of
the 13 annual medians fail to meet the minimum-
light requirement for growth to 1 m, as does the
long-term median, given by mc 5 23.43 mg Chl m23

and ms 5 9.84 g m23 TSS (Fig. 10, asterisk). The
target concentrations, calculated by substituting
the values for the long-term medians into the for-
mula in Table 7 for projection to origin, are 20.1
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TABLE 7. Formulae for coordinates of target concentrations of chlorophyll, [Chl], and total suspended solids, [TSS], determined
by intersection of Eq. 7a–c with the linear fit to empirically determined pairs of [Chl] and [TSS] that meet SAV minimum light
requirement using nonlinear optical model. Equation for the minimum light requirement is [TSS] 5 S0(Zmax) 2 f[Chl], where a
separate estimate of intercept [S0(Zmax)] and slope [f(Zmax)] are required for each restoration depth, Zmax. Dependence of coefficients
on Zmax is omitted in the table for clarity. Last column gives conditions for obtaining a positive concentration as the intersection. ms

5 median concentration of TSS; mc 5 median concentration of chlorophyll a.

Management Action [Chl] [SPM] Condition

Chlorophyll reduction only
S 2 m0 s

f
ms ms # S0

SPM reduction only mc S0 2 fmc

S0m #c f

Projection to origin
S m0 c

fm 1 mc s

S m0 s

fm 1 mc s

No restrictions

Normal projection
fS 2 fm 1 ms c

21 1 f

2S 1 f m 2 fm0 s c

21 1 f

1
m # m 1 Ss c 0f

and
1

m $ (fm 2 S )s c 02f

mg chl m23 and 8.4 g TSS m23 (Fig. 10 circle).
Managers would need to consider the relative con-
trollability of chlorophyll (via nutrient reductions)
versus TSS, much of which comes from in situ re-
suspension. A target based on chlorophyll reduc-
tion only, given by [Chl] 5 12.66 mg m23, [TSS]
5 9.84 g m23, may be the more attainable target
(Fig. 10).

While it is true that SAV integrates environmen-
tal conditions (Dennison et al. 1993), short-term
events can also affect growth and survival of SAV.
For example, Moore et al. (1997) documented the
impact of a month-long turbidity pulse on the de-
mise of transplanted eelgrass beds at an upriver
site in the York River, Virginia. The losses occurred
even though annual median daily attenuation co-
efficients were not statistically different from those
at a downriver site where the turbidity pulse was
not as evident and grasses survived. Two similar
events are identifiable in the Rhode River data
(Fig. 10). A late spring freshet in 1989 (Gallegos
et al. 1992) caused high growing season chloro-
phyll concentrations (median . 45 mg m23), and
the spring storm of March 1993 produced near re-
cord flows of the Susquehanna River and high sus-
pended solids concentrations (median TSS . 17 g
m23). It is possible that the calculation of water
quality concentrations from measured data needs
to be weighted for timing in relation to critical
growth stages. Duration of low-light events may
also be a factor (Moore et al. 1997 and references
therein). The weights assigned to different time
periods would vary with the growth characteristics
of different SAV species, but procedures for cal-
culating water quality targets from suitably weight-
ed averages would remain unchanged.

Summary and Conclusions

A simplified procedure for calculating mini-
mum-light water quality goals for protection and
restoration of SAV is presented, based on applica-
tion of the Lambert-Beer law to the diffuse atten-
uation coefficient for downwelling photosyntheti-
cally active radiation, Kd(PAR). The applicability of
the Lambert-Beer law in Case 2 waters in general
and to PAR in particular was investigated using a
simple spectrally integrated algebraic summary
(SIAS) model of diffuse attenuation based on the
equation of Kirk (1984, Eq. 2). The SIAS model
was shown to predict values of diffuse attenuation
coefficient for both spectral irradiance and PAR
that agreed very well with those determined by
Monte Carlo simulation of the radiative transfer
equations (Fig. 4).

The SIAS model was used to simulate spectral
and broadband diffuse attenuation coefficients in
Case 2 waters with conditions typical of mesohaline
mainstem Chesapeake Bay (Fig. 5). With applica-
tion of the simple correction for geometry of the
underwater light field proposed by Gordon
(1989), diffuse attenuation coefficient obeyed the
Lambert-Beer to within about 8% (Fig. 7b,d).
Without correction, errors associated with estimat-
ing Kd from a linear regression on water quality
concentrations were about 14% for narrow and
broadband Kd (Fig. 7a,c). Errors in estimated
Kd(PAR) varied asymmetrically, resulting in mostly
overestimates at low Kd(PAR) and underestimates
at intermediate and high Kd(PAR) (Fig. 7c). The
tendency toward asymmetric errors caused the cal-
culated minimum-light water quality lines (lines of
constant Kd(PAR) as a function of TSS and chlo-
rophyll) to diverge from those determined by nu-
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merical solution of the SIAS model (Fig. 9a).
These errors in calculated minimum-light water
quality criteria were a direct result of failure of
Kd(PAR) to obey the Lambert-Beer law.

In spite of the failure of Kd(PAR) to conform to
the Lambert-Beer law across a wide range of Kd,
the numerically determined minimum-light water
quality targets were linear to a very high degree
(Fig. 9). Even though Kd(PAR) is not a linear func-
tion of the optical water quality concentrations, at
constant Kd, the covariation of TSS and chlorophyll
is very nearly linear (Fig. 9). The procedure of de-
termining water quality goals from the intersection
of lines describing the variation of water quality
concentrations at constant Kd(PAR) and a water
quality improvement strategy remains valid (Fig.
10), even though the coefficients in the line de-
scribing the minimum-light water quality require-
ments must be determined empirically by appli-
cation of a suitably calibrated optical model.

The revised procedure meets the dual (and po-
tentially conflicting) requirements for accuracy
and ease of use for managers. Accuracy is assured
because the model used to generate the minimum-
light water quality requirements has now been val-
idated against more mechanistic simulations of the
radiative transfer equations. The procedure is easy
to use because large amounts of data can be dis-
played in 2 dimensions, and water quality targets
calculated analytically and automatically. Wide-
spread application of the procedure will require
that we gain a better understanding of the regional
variability in specific-absorption and scattering
spectra of particulate matter. As will be shown in a
related paper, this requirement would have been
necessary even if Kd(PAR) had conformed to the
Lambert-Beer, due to difficulties in estimating spe-
cific-attenuation coefficients from large scale water
quality monitoring programs with very limited op-
tical data.
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