2nd CLIVAR Ocean Model Development Panel Meeting « Extended meeting on forcing ocean-ice climate models »

Experiments with JRA-55 forcing dataset in NEMO global eddying configurations

Julien Le Sommer, J.M. Molines, B. Barnier

- 1. Model set-up, experiments and diagnostics
- 2. Sensitivity tests with JRA-55 forcing dataset at 0.5° resolution
- 3. Sensitivity tests with JRA-55 forcing dataset at 0.25° resolution
- 4. Wrap-up and conclusions

DRAKKAR model set-up

Two NEMO model configurations

	ORCA05.L46	ORCA025.L75
code version	NEMO v. 3.5	NEMO v.3.5
sea-ice model	LIM2	LIM2
horizontal grid	ORCA	ORCA
resolution	0.5° (cosine lat)	0.25° (cosine lat)
vertical grid	z-levels, 46	z-levels, 75
lateral closures (tracers)	iso, no GM	iso, no GM
lateral closures (momentum)	biharm	biharm
vertical closures	TKE, EVD	TKE, EVD
salinity restoring	intermediate	intermediate
bulk formulae	CORE	CORE

DRAKKAR standard global configurations (as of 2014) ORCA025.L75 will be used in several ESMs for CMIP6

Five model experiments

Two ORCA05 experiments

ORCA05-JRAsensitivity experiment (JRA, absolute winds)ORCA05-DFSreference experiment (DFS5.2, absolute winds)

over period 1958-2012, no spin-up, one pass

Three ORCA025 experiments

ORCAO25-JRA1	sensitivity experiment (JRA, relative winds)
ORCA025-JRA2	sensitivity experiment (JRA, absolute winds)
ORCA025-DFS	reference experiment (DFS5.2, absolute winds)

DFS : DFS5.2, ERA-i + corrections (Brodeau et al. 2010, Dussin et al. 2014)
JRA : JRA-55, corrected data as distributed in Mar. 2015 (v0.2)

Question : order zero difference between runs forced by JRA vs DFS ?

Focus on standard metrics for OGCM sensitivity studies

- global trends (temp, sal, ssh)
- mean circulation patterns (gyre, equatorial)
- sea-ice (concentration, thickness)
- air-sea fluxes and mixed layers
- overturning

plots based on DRAKKAR monitoring system mostly showing averages over 2000-2007

- 1. Model set-up, experiments and diagnostics
- 2. Sensitivity tests with JRA-55 forcing dataset at 0.5° resolution
- 3. Sensitivity tests with JRA-55 forcing dataset at 0.25° resolution
- 4. Wrap-up and conclusions

GLOBAL TRENDS IN ORCA05

MEAN CIRCULATION IN ORCA05

Mean sea surface height

ORCA05-GJMJRA1 SSHGLp 2000-2007 DEPTH=3.05

ORCA05-GJM189d SSHGLp 2000-2007 DEPTH=3.05

Mean sea surface height

ORCA05-GJMJRA1 SSHGLp 2000-2007 DEPTH=3.05

ORCA05-GJM189d SSHGLp 2000-2007 DEPTH=3.05

Barotropic transport

JRA : red DFS : black

Barotropic transport

JRA : red DFS : black

Barotropic transport

JRA : red DFS : black OBS : blue

Mean zonal equatorial currents

ORCA05 Uequat 2000-2007-GJMJRA1 ORCA05 Uequat 2000-2007-GJM189d 0 0 -50-50-100-100-150-150-200-200-250-250-300-300-350-350Pacific Pacific Atlantic Atlantic -400-400-450-450-500-500 lon_{-180} lon_180 -117 -117 -53 -53 10 73 10 73 0.00lat 0.00lat **JRA** DFS 0.25 0.50 1.250.25 1.250.00 0.751.500.00 0.50 0.751.001.501.00LCCE-MEOM LCCE-MEON

SEA ICE IN ORCA05

Sea ice extent and sea ice area

ARCTIC

JRA : red DFS : black OBS : blue

Sea ice thickness (September)

Sea ice thickness (September)

Sea ice thickness (March)

Sea ice thickness (March)

Sea ice extent and sea ice area (Antarctic)

ANTARCTIC

JRA : red DFS : black OBS : blue

Sea ice thickness (March)

ANTARCTIC

Sea ice thickness (March)

ANTARCTIC

AIR-SEA FLUXES AND MIXED LAYER IN ORCA05

Net heat flux

ORCA05-GJMJRA1 HeatFlx 2000-2007 DEPTH=3.05

ORCA05-GJM189d HeatFlx 2000-2007 DEPTH=3.05

FS

JRA versus DFS5.2 in ORCA05

Freshwater flux

ORCA05-GJMJRA1 WaterFlx 2000-2007 DEPTH=3.05

ORCA05-GJM189d WaterFlx 2000-2007 DEPTH=3.05

LGGE-MEOM

 $[\mathbf{mm.d}^{-1}]$

JRA versus DFS5.2 in ORCA05

Freshwater flux

ORCA05-GJMJRA1 WaterFlx 2000-2007 DEPTH=3.05

ORCA05-GJM189d WaterFlx 2000-2007 DEPTH=3.05

 $[\mathbf{mm.d}^{-1}]$

LGGE-MEOM

 $[\mathbf{mm.d}^{-1}]$

[m]

[m]

OVERTURNING IN ORCA05

Mean overturning stream function (Atlantic)

MOC ATLANTIC (sv) ORCA05-GJMJRA1 y2000-2007

MOC ATLANTIC (sv) ORCA05-GJM189d y2000-2007

Mean overturning stream function (Global)

MOC GLOBAL (sv) ORCA05-GJMJRA1 y2000-2007

MOC GLOBAL (sv) ORCA05-GJM189d y2000-2007

Mean overturning stream function (Global)

MOC GLOBAL (sv) ORCA05-GJM189d y2000-2007

Southern Ocean overturning stream (pressure coordinate)

JRA : red DFS : black

Southern Ocean overturning stream (pressure coordinate)

JRA : red DFS : black

Overall, the two simulations are very similar, except for

- mean circulation patterns
 - slightly contracted subtropical gyre in the north pacific
 - weaker Drake passage transport
 - slightly shallower / less energetic equatorial jets (cf winds)
- sea-ice
 - weaker antarctic summer sea-ice extent (cf previous talk)
 - thinner antarctic summer sea-ice
 - slightly thicker arctic sea ice (all-year)
- mixed layers
 - deeper winter mixed layers in the Southern Ocean
- overturning
 - weaker upper cell overturning in the SO

- 1. Model set-up, experiments and diagnostics
- 2. Sensitivity tests with JRA-55 forcing dataset at 0.5° resolution
- 3. Sensitivity tests with JRA-55 forcing dataset at 0.25° resolution
- 4. Wrap-up and conclusions

GLOBAL TRENDS IN ORCA025

TRANSPORTS IN ORCA025

Barotropic transport

JRA1 (abs) : black JRA2 (rel) : red DFS : green

Barotropic transport

JRA1 (abs) : black JRA2 (rel) : red DFS : green

Barotropic transport

JRA1 (abs) : black JRA2 (rel) : red DFS : green OBS : blue

MIXED LAYER IN ORCA025

Mixed layer depth

LCCE-MEOM

Mixed layer depth

LCCE-MEOM

SEA ICE IN ORCA025

Antarctic sea ice extent and area

JRA1 (abs) : black JRA2 (rel) : red DFS : green OBS : blue

EDDY KINETIC ENERGY IN ORCA025

Surface eddy kinetic energy

ORCA025.L75 EKEgl 1958 GJM189 DEPTH=10.00 DFS

Surface eddy kinetic energy

ORCA025.L75 EKEgl 1958 GJM189 DEPTH=10.00 DFS

Surface eddy kinetic energy

ORCA025.L75 EKEgl 1958 GJM189 DEPTH=10.00 DFS

ORCA025.L75 EKEgl 1958 GJMJRA2 DEPTH=100RA2

Surface eddy kinetic energy

ORCA025.L75 EKEgl 1958 GJM189 DEPTH=10.00 DFS

ORCA025.L75 EKEgl 1958 GJMJRA2 DEPTH=100RA2

- 1. Model set-up, experiments and diagnostics
- 2. Sensitivity tests with JRA-55 forcing dataset at 0.5° resolution
- 3. Sensitivity tests with JRA-55 forcing dataset at 0.25° resolution
- 4. Wrap-up and conclusions

Forcing ocean/sea-ice models with JRA-55 (corrected v0.2) ?

- sensitivity to forcing depend on model configuration (resolution)
- trends not discussed here but could possibly affect multi-pass runs
- at coarse resolution, JRA-55 forced model solution is « ok »

at 0.5° resolution,

DFS and JRA lead very similar simulations, except for

- Southern Ocean : DP transport, mld, overturning, sea ice
- slightly less energetic pacific ST gyre and equatorial circulation

at 0.25° resolution,

DFS and JRA lead different model solutions

- spurious polynia in the Admunsen and the Ross seas
- possibly due to (eddy) heat advection from the boundary current
- possibly associated with surface winds (?).
- depend on the period (cf Claus Boning's results in Kiel)

EXTRA MATERIAL

Barotropic stream-function

ORCA05-GJMJRA1 PSI ATLN 2000-2007

ORCA05-GJM189d PSI ATLN 2000-2007

MIN: -300 MAX: 220 C.I.: 10

ORCA05-GJMJRA1 m03.MLDrho0.03 2000-2007

ORCA05-GJM189d m03.MLDrho0.03 2000-2007

Sea ice thickness (September)

ANTARCTIC

Sea ice concentration (March)

Sea ice concentration (September)

Sea ice concentration (September)

Sea ice concentration (March)

Sea ice extent and sea ice area (maximum)

JRA : red DFS : black OBS : blue

Sea ice extent and sea ice area (minimum)

