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Abstract We present a new observation-based estimate of the global oceanic carbon dioxide (CO2)
sink and its temporal variation on a monthly basis from 1998 through 2011 and at a spatial resolution of
1◦×1◦. This sink estimate rests upon a neural network-based mapping of global surface ocean
observations of the partial pressure of CO2 (pCO2) from the Surface Ocean CO2 Atlas database. The resulting
pCO2 has small biases when evaluated against independent observations in the different ocean basins,
but larger randomly distributed differences exist particularly in high latitudes. The seasonal climatology
of our neural network-based product agrees overall well with the Takahashi et al. (2009) climatology,
although our product produces a stronger seasonal cycle at high latitudes. From our global pCO2 product,
we compute a mean net global ocean (excluding the Arctic Ocean and coastal regions) CO2 uptake
flux of −1.42 ± 0.53 Pg C yr−1, which is in good agreement with ocean inversion-based estimates. Our
data indicate a moderate level of interannual variability in the ocean carbon sink (±0.12 Pg C yr−1, 1𝜎)
from 1998 through 2011, mostly originating from the equatorial Pacific Ocean, and associated with the
El Niño–Southern Oscillation. Accounting for steady state riverine and Arctic Ocean carbon fluxes our
estimate further implies a mean anthropogenic CO2 uptake of −1.99 ± 0.59 Pg C yr−1 over the analysis
period. From this estimate plus the most recent estimates for fossil fuel emissions and atmospheric CO2

accumulation, we infer a mean global land sink of −2.82 ± 0.85 Pg C yr−1 over the 1998 through 2011 period
with strong interannual variation.

1. Introduction

The net global uptake of atmospheric carbon dioxide (CO2) by the ocean plays a major role in reducing
its concentration in the atmosphere and moderating the impact of the CO2 emitted into the atmosphere
through anthropogenic activities. Recent estimates [Mikaloff Fletcher et al., 2006; Wanninkhof et al., 2013a;
Le Quéré et al., 2014] indicate that roughly one quarter of the anthropogenic CO2 emitted in the last 20 years
was taken up by the ocean, at a mean rate of about 2.0–2.5 Pg C yr−1. The net uptake of CO2 by the ocean
is actually somewhat smaller than the uptake of anthropogenic CO2, due to the offsetting effect driven by
the outgassing of natural CO2 that stems from carbon that has been added to the ocean by rivers [Sarmiento
and Sundquist, 1992; Jacobson et al., 2007]. This contemporary global net flux of CO2 into the ocean has been
estimated to be about 1.5 ± 0.5 Pg C yr−1 [Wanninkhof et al., 2013a; Takahashi et al., 2009; Gruber et al., 2009].

While there exists a relatively good consensus between different approaches with regard to the estimation
of the long-term mean flux [e.g., Gruber et al., 2009; Wanninkhof et al., 2013a], its variability in time and space
is much less well known, representing a major source of discrepancies [e.g., Schuster et al., 2013]. This is to a
large degree a consequence of the limited observations that make it challenging to verify the time-evolving
variations in the ocean carbon sink. This is certainly the case for all those approaches that rely on measure-
ments of the surface ocean pCO2, i.e., those that employ the bulk parameterization approach and use the
partial pressure difference between the atmosphere and the ocean surface layer and an estimate of a gas
transfer velocity to estimate the air-sea CO2 flux [see, e.g., Wanninkhof et al., 2009; Garbe et al., 2014]. To date
only one global, interannually varying flux estimate exists that relies largely on this approach [Rödenbeck
et al., 2014], although attempts have been made by using the seasonal cycle of surface ocean pCO2 and
projecting its seasonal temperature response to interannual timescales [e.g., Park et al., 2010] and constrain-
ing modeled pCO2 with existing observations [Valsala and Maksyutov, 2010; Majkut et al., 2014]. This gap
in data and knowledge stands in contrast to that of the annual mean and the seasonal cycle, for which the
iconic Takahashi climatology has been regularly updated since its first publication in 1999, i.e., Takahashi et
al. [1999, 2003, 2009]. The main reason is that although recent pCO2 databases [Takahashi et al., 2013; Bakker
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et al., 2014] contain roughly 6 to 10 million observations, the data are still sparse in time and space. Region-
ally, interannual varying flux estimates exist along regular shipping routes, e.g., in the subtropical Atlantic
Ocean along the UK-Caribbean shipping route [Watson et al., 2009]; however, the only place, for which inter-
annually varying flux estimates based on surface ocean pCO2 data are available for an extended region
is the equatorial Pacific, largely thanks to the instrumentation of the Tropical Atmospheric-Ocean project
array and the regularity with which these buoys are visited by ships with underway pCO2 instruments
[Feely et al., 1999, 2006].

As a result, most of what is known about the interannual variability of the global ocean carbon sink stems
from ocean biogeochemistry models that have been run in hindcast mode, i.e., run over the past few
decades with observed atmospheric boundary conditions [e.g., Le Quéré et al., 2000; McKinley et al., 2003;
Wetzel et al., 2005; Le Quéré et al., 2007; Doney et al., 2009a; Le Quéré et al., 2010; Sarmiento et al., 2010;
Wanninkhof et al., 2013a].

While the different biogeochemical models disagree quite substantially with regard to the exact timing
of the interannual variations, they concur that globally, the interannual variability of the sea-air CO2 fluxes
is relatively small and that most of the variability over the last 20 years stems from the equatorial Pacific
[Le Quéré et al., 2000; McKinley et al., 2003; Wetzel et al., 2005; Le Quéré et al., 2007; Doney et al., 2009a;
Wanninkhof et al., 2013a; Ishii et al., 2014]. The observations from the equatorial Pacific covering by now
nearly 30 years support that this region exhibits large fluctuations in the sea-air CO2 flux. During the posi-
tive phase of the El Niño–Southern Oscillation (ENSO) climate mode, i.e., during El Niños, the suppression
of upwelling results in less CO2-rich water near the surface, which in turn leads to a near vanishing of the
outgassing of CO2 that usually characterizes this region. On the other hand, during La Niñas, the unusu-
ally strong upwelling of cold, CO2-rich water leads to an anomalously strong outgassing [Feely et al., 2006].
The first global surface ocean pCO2 data-based estimate by Rödenbeck et al. [2014] supports that the
ENSO-driven variability in the tropical Pacific provides the largest contribution to the interannual variability
of the global ocean CO2 flux. Biogeochemical models tend to capture this primarily upwelling-driven inter-
annual variability generally well, resulting in a relatively good agreement between models and observations
for the equatorial Pacific [Le Quéré et al., 2000; McKinley et al., 2003; Peylin et al., 2005].

No such agreement exists with regard to interannual variability in the extratropical regions. The few
longer-term time series stations from the extratropics suggest a substantial, although not very large amount
of interannual variability in the air-sea CO2 fluxes [e.g., Gruber et al., 2002; Bates, 2012]. The available biogeo-
chemical models support the small magnitude, but differ fundamentally with regard to the timing of the
variation in the anomalous fluxes [e.g., McKinley et al., 2004; Schuster et al., 2013].

Here we address the long-term mean global ocean carbon sink, its seasonality, and its recent interannual
variability from 1998 through 2011 using the two-step neural network approach recently developed by
Landschützer et al. [2013]. We will show that our globally extrapolated pCO2 data product compares favor-
ably against independent evaluation data, giving us confidence in the results. Our data will show that the
global interannual variability of the air-sea fluxes is relatively modest and mostly governed by the variabil-
ity in the equatorial Pacific associated with ENSO. Our results will also provide important constraints for the
mean land sink and its variability over the 1998 through 2011 period.

2. Data and Methods

The basis for all our analyses are the pCO2 observations synthesized in the Surface Ocean Carbon Atlas
(SOCAT) version 2 (v2) [Bakker et al., 2014] database. We use a two-step neural network approach as
described in Landschützer et al. [2013] to extrapolate the monthly gridded SOCAT v2 product [Sabine et al.,
2013] in space and time and to create monthly sea surface pCO2 maps at a spatial resolution of 1◦ × 1◦ and
for the period from 1998 through 2011. From this product, we compute sea-air CO2 flux maps using a stan-
dard bulk formulation and high-resolution wind speeds. We use the mapping approach of Landschützer et
al. [2013] in an almost identical way compared to its previous application, which considered the Atlantic
only. The most important differences are its extension to the globe, excluding the Arctic Ocean, and the use
of SOCAT v2 [Bakker et al., 2014] instead of SOCAT version 1.5 [Pfeil et al., 2013], which permits us here to
extend the temporal coverage of our neural network estimates through the end of 2011. In the following,
we provide a short summary of the method but refer to Landschützer et al. [2013] for further details.
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Figure 1. Map of the biogeochemical provinces in the global ocean identified by the Self-Organizing Map (SOM)
method: (a) province number of the mode (i.e., most frequent occurrence) and (b) the number of different provinces
every pixel belongs to from 1998 through 2011.

The two steps of our mapping approach are as follows: In the first step, the monthly pCO2 data are clus-
tered into a set of 16 biogeochemical provinces using a Self-Organizing Map (SOM) approach. In the second
step, the pCO2 observations within each biogeochemical province are interpolated using nonlinear func-
tional relationships between a set of input parameters and the observed pCO2—relationships which were
established through a feed-forward neural network (FFN) approach.

For the SOM-based clustering, we used the same four variables as Landschützer et al. [2013], namely sea
surface temperature (SST) [Reynolds et al., 2002], sea surface salinity (SSS) from Estimating the Circulation
and Climate of the Ocean, Phase II (ECCO2) [Menemenlis et al., 2008], mixed layer depth (MLD) from ECCO2
[Menemenlis et al., 2008], and climatological sea surface pCO2 from Takahashi et al. [2009]. As we did not nor-
malize the data, we implicitly weighted the input data toward the seasonal pCO2 climatology (see discussion
in Landschützer et al. [2013]). That way, we ensured that we cluster regions together that have a similar sea-
sonal cycle of pCO2, thereby capturing the most important temporal signal of surface ocean pCO2 through
the temporal evolution of the biogeochemical provinces. This permits us to more accurately reconstruct the
remaining variability through the FFN approach. Subsequently, we removed small “island” provinces with
a surface area smaller than 10 connected grid cells and replaced them with the province number of the
dominant province in the vicinity.

Figure 1 shows the mode of the resulting provinces for each grid cell, i.e., the most frequent occurrence,
as well as the number of regions each 1◦×1◦ cell belongs to during the full time period from 1998
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Table 1. Statistical Measures of the Comparison of the Global
Neural Network-Based Estimates of pCO2 With the SOCAT
v2-Gridded Data [Bakker et al., 2014], Including the Coefficient
of Determination (r2), the Root-Mean-Squared Error (RMSE),
the Mean Difference Between SOM-FFN Estimates and SOCAT
v2-Gridded Data (Bias), and the Number of Grid Cells

Period r2 RMSE (μatm) Bias (μatm) # Data

1998–2011 0.88 12.05 −0.12 105,196
1998 0.89 10.85 0.36 5,923
1999 0.87 13.63 −0.07 4,039
2000 0.85 15.79 −0.05 4,827
2001 0.87 15.61 −0.90 4,624
2002 0.88 11.41 −0.12 6,582
2003 0.85 11.53 0.08 6,993
2004 0.88 11.20 −0.18 8,085
2005 0.89 10.91 −0.32 9,243
2006 0.88 11.88 0.10 11,153
2007 0.87 11.99 −0.37 11,111
2008 0.90 11.51 −0.11 9,504
2009 0.84 12.86 0.29 9,650
2010 0.88 9.98 −0.39 9,234
2011 0.88 12.42 −0.11 4,228

through 2011. Regions with strong seasonal
pCO2 variability, such as the higher latitudes,
undergo stronger province shifts, resulting
in a larger number of provinces per grid cell.
However, the vast majority of the grid cells
belong to less than five provinces over the
entire 168 months of our analysis.

For the FFN-based second step of our
method, we divided the SOCAT v2 pCO2

data of each province into two separate
subsets. The first subset is used to train
the network, whereas the second subset is
used to validate the network output, i.e.,
to prevent the network from overfitting
the heterogeneously distributed data (see
Landschützer et al. [2013] for more details).
Here we use the same SST, SSS, and MLD
products as in the SOM step, plus addition-
ally included Globcolour-based chlorophyll
a (http://www.globcolour.info), the dry air
mixing ratio of atmospheric CO2 (xCO2)
from the GLOBALVIEW marine boundary

layer product [GLOBALVIEW-CO2, 2011], as well as the deseasonalized components of each input variable as
described in Landschützer et al. [2013]. Where chlorophyll data were not available due to cloud cover, the
pCO2 fields were estimated by the remaining four proxies and their deseasonalized components.

We calculated our sea-air flux from the difference of the resulting SOM-FFN pCO2 and the corresponding
atmospheric pCO2 and a gas transfer velocity. For that purpose, atmospheric pCO2 was estimated from
the xCO2 of the GLOBALVIEW marine boundary layer product [GLOBALVIEW-CO2, 2011] and the sea level
pressure from the National Centers for Environmental Prediction [Kalnay et al., 1996], taking into account
the water vapor correction as described in Dickson et al. [2007]. We used high-resolution Cross-Calibrated
Multi-Platform (CCMP) wind speeds [Atlas et al., 2011] and the quadratic gas transfer formulation of
Wanninkhof [1992] rescaled to a global mean gas transfer velocity of 16 cm h−1 (to match a recent esti-
mate by Wanninkhof et al. [2013a]), to derive the monthly sea-air flux density. In ice-covered regions, the
air-sea flux was scaled down to the ice-free part of each grid cell using the monthly sea-ice product of
Rayner et al. [2003].

Our approach is unique in comparison to other data interpolation algorithms [e.g., Takahashi et al., 2009;
Nakaoka et al., 2013; Rödenbeck et al., 2013; Sasse et al., 2013] in that we can produce nearly bias-free
estimates on a global scale, while retaining a reasonable amount of fine-scale structure in the observa-
tions. In particular, it avoids much of the strong smoothing inherent in the approach used to produce
the Takahashi climatologies [e.g., Takahashi et al., 1999]. Compared to previously published SOM-based
algorithms [Telszewski et al., 2009; Nakaoka et al., 2013; Sasse et al., 2013], the two-step method has the
advantage of producing continuous pCO2 outputs by reconstructing the nonlinear relationship between
driver variables and pCO2 observations, where data sparse regions benefit from the established relationship
within the same preidentified province. Our (nonlinear) regression-based approach provides an alterna-
tive CO2 flux variability estimate compared to the ocean mixed layer process-based method by Rödenbeck
et al. [2014]. The mixed layer method has the advantage that it permits to link the air-sea CO2 fluxes
explicitly to the underlying processes; however, pCO2 values for areas without data are interpolated and
additionally smoothed.

3. Evaluation and Uncertainties
3.1. Residual Analysis
Globally, the neural network is able to fit the pCO2 data from SOCAT v2 very well. Table 1 shows the statis-
tical results for the entire time period and individual years, revealing long-term means for the coefficient
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Figure 2. Global maps of (a) temporal mean residuals and (b) standard deviation of the residuals in μatm between neural
network estimates and SOCAT v2-gridded observations [Bakker et al., 2014] for the period from 1998 through 2011. Pixels
that occur in Figure 2a but are missing in Figure 2b only have one occupation in time.

of determination (r2) of 0.88, for the root-mean-squared error (RMSE) of 12.05 μatm and a negligibly small
overall bias of −0.12 μatm over the entire time period from 1998 to 2011 and for a total of 105,196 gridded
observations. This good global fit holds for each individual year with the r2 ranging from 0.84 to 0.90, the
RMSE ranging from 10 μatm to 16 μatm and the annual bias staying within ±1 μatm (Table 1). The RMSE
of these global fits are only slightly worse than those we achieved for the Atlantic only [Landschützer et al.,
2013], which is reassuring given that we now fit data over a much larger domain. As was the case for the
Atlantic basin [see Landschützer et al., 2013], the distribution of the residuals does not depend on the fitted
pCO2 nor on any other of the input variables, confirming that our global estimates are unbiased.

The above conclusions for the global ocean do not apply spatially, as the mean pCO2 residuals for each
grid cell reveal a clear spatial structure, with regions of persistent positive or negative residuals (Figure 2).
The largest residuals occur in the high latitudes of both hemispheres, in regions with strong spatial gradi-
ents such as on the Patagonian shelf, in the eastern equatorial Pacific and the eastern equatorial Atlantic,
and in the Gulf Stream and the North Atlantic Current region. In contrast, other open ocean regions, such
as the gyres have comparatively low residuals. The spatial pattern of the mean residuals resembles the
spatial patterns of the standard deviation of the residuals (Figure 2b). In fact, the two fields are correlated
(r2 = 0.49), suggesting that the relative error of our fits is relatively constant; i.e., that the fits are generally
worse in absolute terms when the pCO2 variability is high in space and time, and better when the variability
is small.
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Table 2. Validation of the Neural Network Estimates With Data From Time Series Stationsa

Station Location Time Period RMSE (μatm) Mean Offset (μatm)

BATS 31.66◦N, 64.16◦W 1998 through 2011 15.64 0.44
HOT 22.75◦N, 158.00◦W 1998 through 2011 11.61 0.09
ESTOC 29.04◦N, 15.50◦W 1998 through 2009 14.50 −7.15
Irminger 64.30◦N, 28.00◦W 1998 through 2006 22.64 −1.11
CCE1 33.00◦N, 122.00◦W 2008 through 2010 14.39 −4.11
K2 47.00◦N, 160.00◦E 2007 through 2009 27.79 −0.16

aStations include the Bermuda Atlantic Time series Station and Hydrostation “S” (BATS)
[Bates, 2007; Gruber et al., 2002], the Hawaiian Ocean Time series station ALOHA (HOT) [Dore
et al., 2009], the European Station for Time series in the Ocean (ESTOC) [González-Dávila et
al., 2007], the Irminger Sea station [Olafsson, 2007], CCE1 mooring [Sutton et al., 2011], and
the K2 time series station [Wakita et al., 2010]. A negative sign for the offset implies that the
SOM-FFN estimates are smaller than the validation data.

3.2. Validation With Independent Observations
We validate the SOM-FFN pCO2 estimates by comparing them to two sets of independent observations that
were not included in SOCAT v2 and hence were not used to train the FFN. The first set consists of data from
six time series stations (available via http://cdiac.ornl.gov/oceans/Moorings/), while the second set con-
sists of pCO2 observations that have been included into the LDEOv2012 database [Takahashi et al., 2013]
(http://cdiac.ornl.gov/ftp/oceans/LDEO_Database/Version_2012/), but are absent in SOCAT v2.

The data from the six time series stations stem from two very different environments and thus cover a
good fraction of the global pCO2 dynamics. Three of the time series stations are located in the subtrop-
ical gyres (the Bermuda Atlantic Time Series and Hydrostation S (BATS) [Bates, 2007; Gruber et al., 2002],
the Hawaiian Ocean Time series station ALOHA (HOT) [Dore et al., 2009], and the European Station for
Time series in the Ocean (ESTOC) [González-Dávila et al., 2007]), while the other three are in temperate to
subpolar latitudes (Irminger Sea [Olafsson, 2007], CCE1 [Sutton et al., 2011], and K2 [Wakita et al., 2010])
(see Table 2 for details).

The RMSEs between our SOM-FFN estimates and the observations from the different time series stations
are similar to those we obtained from the SOCAT v2 data set (see Table 1), i.e., ranging from 11 to 16 μatm.
An important exception is the time series stations in the Irminger Sea and in the northwestern North
Pacific (K2), where the residuals show a larger spread with a RMSE of 23 to 28 μatm, albeit with a small bias.
These stations are in the regions where the standard deviation of the residuals tend to be relatively large
(Figure 2b), suggesting that the input parameters at these two stations are not able to fully explain the sea
surface pCO2 variability.

In contrast to the virtually inexistent global bias of our SOM-FFN pCO2 estimates relative to the training data
set, i.e., SOCAT v2 (Table 1), our estimate has a larger mean offset relative to the independent observations
from the six time series stations (Table 2). The mean offset for each station ranges from −7 μatm (ESTOC)
to 0.5 μatm (BATS). We suspect that potential biases in the calculated pCO2 from the time series stations
contribute to the overall offset, as the computed pCO2, from the observed DIC and TALK carry uncertainties
of up to 6 μatm [see Millero, 1995]. Furthermore, a different choice of dissociation constant, e.g., Peng et al.
[1987], would lead up to a ∼ 9 μatm larger offset at station BATS. But of course, also our SOM-FFN estimates
surely contribute to the mean offsets, although we find it reassuring that the mean offset across all six sites
is only −2 μatm.

A further test for our SOM-FFN product is how well it is able to represent the temporal evolution of the
observed pCO2 at the six time series sites. As an example, Figure 3 compares the observations from two
of the longest running time series stations with the SOM-FFN estimates, i.e., the record from BATS and
HOT. While the seasonal cycle is fairly well captured at both stations, month-to-month variabilities are less
well reconstructed. It is noteworthy that near Hawaii, the comparison shows a better agreement with the
independent HOT data (Figure 3d) than with the colocated data from the SOCAT v2 database, which were
actually used for the training.
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Figure 3. Long-term seasonal cycle and mean seasonal cycle of the neural network estimates compared to (a and b)
BATS [Bates, 2007; Gruber et al., 2002] and (c and d) HOT [Dore et al., 2009] time series stations. Grey shading shows
the uncertainty based on the RMSE of the SOM-FFN estimate. Pink shading shows the standard deviation of the mean
seasonal cycle for each time series station. Blue triangles show colocated observations available in SOCAT v2.

In order to evaluate our data across a larger spectrum of the observed pCO2 dynamics, we turn to the pCO2

data from the LDEOv2012 database. To identify the extra data that can be used for the evaluation, we first
binned all observations of the LDEOv2012 database onto our monthly 1◦×1◦ grid by simply taking the
average of all observations within each bin. We then removed all pixels that have data within the gridded
SOCATv2 database, leaving only data from stations and cruises that are not included in SOCAT. Overall, from
1998 through 2011, we retrieve 9223 new 1◦×1◦ pixels, corresponding to roughly 10% of the data used in
the training (see Table 1). The majority (5424) of the data originate from between 40◦S and 40◦N, whereas
the rest (3799) originate from the high latitudes, i.e., regions where we have identified the strongest neural
network-observation discrepancy, as illustrated in Figure 4.

This second test reveals a mean difference across all 9223 evaluation data of 1.48 μatm, confirming our pre-
vious conclusion that our estimates are nearly bias free when averaged over larger spatial and temporal
domains. The root-mean-squared error of 25.95 μatm is somewhat larger than that we found for all the time
series stations together, but actually similar to those from the high-latitude time series stations. If we only
consider data within 40◦S to 40◦N, the bias becomes negligible (−0.25 μatm) and the root-mean-squared
error falls to 16.48 μatm.

In summary, the evaluation provides strong evidence that the two-step neural network method is capable of
producing essentially bias-free pCO2 fields once averaged in time and space and that it has no evident ten-
dency for overfitting, i.e., there is no indication that errors relate to the pCO2 data availability. The accuracy
is best in the low latitudes and in the open ocean, but degrades toward the high latitudes.

3.3. Uncertainty of the Air-Sea CO2 Flux
As the main product of interest is the basin-scale integrated air-sea CO2 flux, we conduct our uncertainty
analysis at this scale, using the 11 ocean regions identified by the Regional Carbon Cycle Assessment and
Processes (RECCAP)/Ocean Inversion projects [Gurney et al., 2008; Mikaloff Fletcher et al., 2006] for the spatial
integration. As the uncertainty associated with the gas exchange coefficient is of fundamentally different
nature, i.e., mostly systematic given it is not well-known functional dependence on wind speed, this source
of error is dealt with separately in a second step below. Therefore, we first focus on the uncertainty of the
air-sea difference of pCO2, beginning at the grid level, and then continue at the basin-scale level. For the
latter we need to consider the fact that the grid level pCO2 estimates are highly correlated in space, i.e., that
they are not independent.
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Figure 4. Global maps of (a) temporal mean residuals and (b) standard deviation of the residuals in μatm between
neural network estimates and monthly gridded data from the LDEOv2012 database [Takahashi et al., 2013] that are
not included in SOCATv2 from 1998 through 2011. Pixels that occur in Figure 4a but are missing in Figure 4b only have
one occupation in time.

The uncertainty of the air-sea difference of pCO2 is dominated by the uncertainty of the oceanic pCO2, per-
mitting us to neglect the small contribution from the atmospheric pCO2 (less than 1 μatm). There are three
main sources of uncertainty/error for oceanic pCO2: (i) the measurement error, (ii) the uncertainty stemming
from the gridding of the pCO2 observations into 1◦×1◦ bins, and (iii) the uncertainty introduced by mapping
the pCO2 observations using the SOM-FFN approach. Assuming that these sources of errors are indepen-
dent, the standard error of the estimated grid level pCO2, 𝜎(pCO2) can be estimated by the sum of squares
[see also Wang et al., 2014].

𝜎(pCO2)2 = 𝜎(meas)2 + 𝜎(grid)2 + 𝜎(map)2 (1)

The measurement error, 𝜎(meas), tends to be the smallest of the three, i.e., about 2–5 μatm [Pfeil et al.,
2013; Wanninkhof et al., 2013b], so that we neglect its contribution. For the discretization or gridding error,
𝜎(grid), we adopt a value of 5 μatm based on Sabine et al. [2013]. For the mapping error 𝜎(map), we use
the mean residuals in each of the 11 oceanic regions, resulting in values ranging from 7 to 17 μatm (with
a global average of 12 μatm). With these choices, we arrive at a grid level uncertainty of the mapped pCO2

product, i.e., 𝜎(pCO2) of between 8.6 and 17.7 μatm, with the majority of the error being determined by the
mapping error.
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The error of the basin-scale mean oceanic pCO2, i.e., 𝜎(< pCO2 >) is computed by dividing each error term
in (1) by its effective degrees of freedom, Neff, i.e.,

𝜎(< pCO2 >)2 =
𝜎(grid)2

Neff(grid)
+

𝜎(map)2

Neff(map)
(2)

where the chevrons denote the spatial averaging and where we neglected already the contribution of the
measurement error.

To estimate the effective degrees of freedom for the gridding error, Neff(grid), we use the global mean
decorrelation length scale for oceanic pCO2 of Jones et al. [2012] of 400 km. We calculate the point-to-point
distance in kilometers of each pixel within each RECCAP region and calculate Neff(grid) by the effective
number of pixels that are outside the decorrelation radius. This is clearly a simplified estimate, as we do not
account for temporal and spatial changes of the decorrelation length or the north-south to east-west differ-
ence in this number; however, to date, we do not have a sufficiently developed understanding of regional
specific length scales.

To estimate the effective degrees of freedom for the mapping error, Neff(map), we determined the spa-
tial decorrelation length of the residuals by analyzing their semivariograms within each region. First, the
residuals were divided into a small set of randomly chosen mutually exclusive ensembles with the size of
these ensembles being based on the relative data availability. This gave 15 ensembles for the subtropi-
cal/temperate North Atlantic, 15 for the subtropical/temperate North Pacific, 10 for the subpolar Atlantic
Ocean, 3 for the northern and southern Indian Ocean, and 5 for the remaining regions. We then fitted an
exponential function to each semivariogram, resulting in median autocorrelation lengths between 10 km
and 957 km for the individual regions. In all cases the semivariograms show a large lag 0 correlation, leading
to a relatively low effective number of degrees of freedom.

Adding the error from the data gridding and the SOM-FFN mapping together yields a total mean Δ pCO2

uncertainty for the 11 RECCAP regions between 2 and 9 μatm. With a global mean gas transfer rate of
0.06 mol C m−2 yr−1 μatm−1, this results in a flux uncertainty between ±0.02 and ±0.09 Pg C yr−1 for the
individual regions and a global mean uncertainty of ±0.17 Pg C yr−1 calculated by square root of the sum
squares propagation.

In the final step, we now include the uncertainty introduced by the gas exchange coefficient. This uncer-
tainty is entirely driven by the uncertainty of the gas transfer velocity, which we estimate by using a measure
of the range given by three gas transfer velocity formulations with different wind speed dependencies.
These are a quadratic [Wanninkhof, 1992], a combination of a quadratic and a cubic [Nightingale et al., 2000]
and a cubic relationship [Wanninkhof and McGillis, 1999]. The error is then derived from the standard devi-
ation of the resulting flux estimates. We scaled each of these formulations to a global mean gas transfer
velocity from 1998 through 2011 of 16 cm h−1, following Wanninkhof et al. [2013a], who suggested a mean
value of 15.95 h−1 on the basis of the CCMP wind product (though for a different time period, i.e., 1990
through 2009). We do this in order to match the strong global constraint provided by the oceanic uptake
of bomb radiocarbon [Sweeney et al., 2007; Naegler, 2009; Graven et al., 2012a; Wanninkhof et al., 2013a].
In the case of the quadratic relationship, the resulting rescaled transfer resistance factor of 0.254 closely
matches the one suggested by Wanninkhof et al. [2013a] (0.251). For our analysis we use CCMP winds only,
recognizing, however, that the gas transfer velocity is further sensitive to the wind product used.

Combining the uncertainties stemming from Δ pCO2 and the transfer velocity, using square root of the sum
squares propagation, yields an uncertainty of ±0.53 Pg C yr−1 for the global long-term mean flux, with the
largest fraction of the error stemming from the uncertainty of the gas transfer velocity. The total error cor-
responds to roughly 37% of the mean global uptake flux reported below. While the air-sea pCO2 difference
error does not change in time, we assume the same uncertainty for each year individually where annual
mean results are shown, while uncertainties derived from changes in the gas transfer vary from month to
month depending on the wind field.

The error of the interannual variability of the air-sea CO2 fluxes, i.e., anomalies relative to the long-term
mean, is likely smaller than this estimate. This is because a large fraction of the uncertainty is of system-
atic nature, particularly the part caused by the systematic uncertainty of the gas transfer velocity, and this
part falls away when considering year-to-year changes. Allowing for a somewhat larger uncertainty of the
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Figure 5. Map of (a) the long-term mean surface ocean pCO2 and (b) the mean CO2 flux density in mol C m−2 yr−1 for
the global ocean (excluding the Arctic Ocean) from 1998 through 2011. Negative flux densities indicate CO2 uptake by
the ocean.

Δ pCO2 on interannual timescales and considering the nonsystematic part of the error associated with the
gas transfer velocity, we thus estimate an uncertainty for the interannual anomalies of the global fluxes of
about ±0.3 Pg C yr−1.

4. Long-Term Mean pCO2 and Sea-Air Flux

The highest long-term mean (1998–2011) surface ocean pCO2 values identified by our SOM-FFN approach
occur in the tropical zones of the global ocean, particularly in the eastern equatorial Pacific upwelling area,
the northern Indian Ocean, along the Californian Current, and in the high-latitude North Pacific (Figure 5).
As these regions are highly supersaturated with regard to atmospheric pCO2, they act as strong source
regions for atmospheric CO2 (see Figure 5). The lowest sea surface pCO2 are found in the high-latitude North
Atlantic, along the Gulf Stream, along the Kuroshio Current and North Pacific Current, and in the subtrop-
ical bands of the Southern Hemisphere. These regions constitute the global ocean’s major sink regions for
atmospheric CO2.

The SOM-FFN-based long-term mean pCO2 pattern largely follow that of the recent Takahashi climatology
[Takahashi et al., 2009]. A detailed comparison obtained by averaging our SOM-FFN pCO2 estimates onto
the 4◦ × 5◦ grid used by Takahashi et al. [2009] and then adjusting them to the same nominal year 2000,
by removing 4.5 times the calculated atmospheric pCO2 trend from our mean SOM-FFN estimate (which is
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Figure 6. Difference in the surface ocean pCO2 in μatm between the average neural network estimates (this study),
corrected to the year 2000, and the climatology of Takahashi et al. [2009]. Positive differences indicate higher pCO2 for
the neural network estimates.

centered between 2004 and 2005), reveals rather small differences for most oceanic regions (Figure 6). The
global statistics show that the two fields have an RMSE of 6.13 μatm and a small mean difference of 0.98
μatm. These numbers are similar to those we had obtained for the Atlantic Ocean [Landschützer et al., 2013].
The largest differences occur in the high latitudes of both hemispheres and in the eastern tropical Pacific.
The latter is likely linked to the decision of Takahashi et al. [2009] to remove observations from El Niño years
from their analysis, while the SOM-FFN estimates include observations in these years. Since the surface
ocean pCO2 of the eastern tropical Pacific during El Niño tend to be anomalously low, the Takahashi clima-
tology tends to be biased high as a result, explaining our lower pCO2. Despite this local discrepancy, the
high level of agreement between the two annual mean surface ocean pCO2 distributions suggests a high
robustness of the climatological mean estimates. This is remarkable when considering that the two results
were obtained with markedly different mapping methods (a neural network method versus a nonisotropic
interpolation method), two very different ways to handle the temporal adjustments (monthly estimates
over 14 years combined to form a monthly climatology versus a constant 1.5 μatm/yr adjustment) and two
different databases of observations (it should be kept in mind, though, that many of the observations are
in both the SOCAT v2 and LDEO databases, although many have undergone distinctly different quality
control procedures).

The 14 year-averaged integrated CO2 flux, derived from the SOM-FFN method, is estimated to be
−1.42 ± 0.53 Pg C yr−1 (excluding the Arctic Ocean). This is a somewhat larger uptake flux than the most
recent estimate based on the Takahashi climatology by Wanninkhof et al. [2013a], i.e., −1.18 Pg C yr−1 for the
reference year 2000, using the same wind product. The two estimates are nearly indistinguishable when
the coastal undersampling correction of 0.2 Pg C yr−1 by Wanninkhof et al. [2013a] is considered, bringing
the Takashashi-based uptake estimate to −1.38 Pg C yr−1.

Although the agreement is encouraging, one needs to recollect that these two estimates are strictly speak-
ing not directly comparable. Our global flux is the long-term mean flux for the years 1998 through 2011,
while in the case of the Takahashi climatology, the global flux is the flux of a climatological year, referenced
to the year 2000.

Both these pCO2-based estimates refer to the contemporary sea-air flux, as there is no direct way to
distinguish between the natural and the anthropogenic component when estimates are derived from
surface ocean observations [see Gruber et al., 2009]. However, considering the natural outgassing of
riverine carbon of 0.45 ± 0.18 Pg C yr−1 [Jacobson et al., 2007] and additionally adding an sea-air flux of
−0.12 ± 0.06 Pg C yr−1 for the Arctic Ocean [Schuster et al., 2013], we estimate an anthropogenic carbon
uptake of −1.99 ± 0.59 Pg C yr−1. This is consistent with the range of recent estimates [e.g., Gruber et al.,
2009; Wanninkhof et al., 2013a], but at the lower end of the range. More recently, Regnier et al. [2013]
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Table 3. Contemporary Mean Sea-Air CO2 Fluxes for 11 RECCAP/Ocean Inversion Regions and the
Major Ocean Basins From (i) This Study (Average From 1998 Through 2011), (ii) Ocean Inversions
(Values From Table S1 in Gruber et al. [2009]) for the Nominal Period 1995–2000, and (iii) the pCO2
Climatology of Takahashi et al. [2009] for the Reference Year 2000, Using the Same Wind Product and
Surface Ocean Area as in (i)a

(i) SOM-FFN (ii) Ocean Inversion (iii) pCO2 Climatology
This Study [Gruber et al., 2009] [Takahashi et al., 2009]

Basin (Pg C yr−1) (Pg C yr−1) (Pg C yr−1)

Pacific north of 18◦N −0.50 ± 0.11 −0.42 ± 0.08 −0.48
Pacific 18◦S–18◦N; west of 160◦W 0.42 ± 0.09 0.30 ± 0.11 0.43
Pacific 18◦S–18◦N; east of 160◦W 0.04 ± 0.04 0.07 ± 0.04 0.04
Pacific 18◦S–44◦S −0.34 ± 0.10 −0.46 ± 0.10 −0.28
Atlantic/Arctic north of 49◦N −0.21 ± 0.06 −0.17 ± 0.07 −0.25
Atlantic 18◦N–49◦N −0.21 ± 0.05 −0.32 ± 0.08 −0.20
Atlantic 18◦S–18◦N 0.10 ± 0.06 0.14 ± 0.06 0.11
Atlantic 18◦S–44◦S −0.17 ± 0.03 −0.17 ± 0.05 −0.11
Southern Ocean south of 44◦S −0.21 ± 0.11 −0.34 ± 0.20 −0.32
Indian Ocean north of 18◦S 0.09 ± 0.06 0.12 ± 0.06 0.10
Indian Ocean 18◦S–44◦S −0.42 ± 0.05 −0.46 ± 0.09 −0.35

Global Ocean −1.42 ± 0.53 −1.70 ± 0.40 −1.32

Pacific Ocean north of 44◦S −0.38 ± 0.25 −0.51 ± 0.17 −0.29
Atlantic Ocean north of 44◦S −0.50 ± 0.14 −0.52 ± 0.13 −0.45
Southern Ocean south of 44◦S −0.21 ± 0.09 −0.34 ± 0.20 −0.32
Indian Ocean north of 44◦S −0.32 ± 0.08 −0.34 ± 0.11 −0.25

aBasin-wide uncertainties for the SOM-FFN and the Ocean Inversion were calculated using stan-
dard error propagation of the individual uncertainty estimates derived for the 11 RECCAP/Ocean
Inversion regions.

suggested that the river outgassing flux may have increased relative to preindustrial conditions as a result of
anthropogenic activities. This would require a larger river outgassing adjustment (by 0.1 Pg C yr−1 or more),
increasing the implied anthropogenic carbon uptake by the same amount.

Table 3 compares the long-term mean results of this study to the results obtained by the Ocean Inver-
sion study of Gruber et al. [2009] and the climatology product of Takahashi et al. [2009] for each of the 11
RECCAP/Ocean Inversion regions. Overall, there is strong agreement between the different estimates with
regard to the magnitude and the direction of the flux. In general, the strongest differences occur in ocean
areas where the least observational coverage exists, i.e., the South Pacific, the Southern Ocean, and the
Southern Indian Ocean.

The Ocean Inversion estimates show the strongest sink per basin. Strong CO2 uptake in the North Pacific
Ocean is almost balanced by the strong outgassing in the tropical Pacific. There is particular good agree-
ment regarding the Atlantic Ocean uptake within all methods, which constitutes the strongest sink of all
basins. The SOM-FFN basin fluxes are often located in-between the Takahashi et al. [2009] product and the
Ocean Inversion product. The largest difference between the SOM-FFN and the other estimates is found in
the Southern Ocean, where the integrated uptake flux is ∼ 0.1 Pg C yr−1 smaller. This may reflect differences
in the methods, but also could be real, owing to the potentially substantial trends in the air-sea CO2 fluxes in
this region [Le Quéré et al., 2007; Lovenduski and Gruber, 2008; Lenton et al., 2013] and the different periods
covered by the three data products.

5. Seasonality

The 14 year mean seasonal cycle of the air-sea CO2 flux density reveals a clear pattern across the different
ocean basins (Figure 7). These seasonal variations in the CO2 flux densities are largely driven by the strong
seasonal cycles of the surface ocean pCO2, and only modified by the seasonal cycles in atmospheric pCO2

and in the gas transfer velocity. We therefore discuss only the fluxes. The broadscale pattern of the fluxes is
similar in the different basins, but there also exist substantial differences.

LANDSCHÜTZER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 938



Global Biogeochemical Cycles 10.1002/2014GB004853

Figure 7. Hovmoeller plots of the mean seasonal cycle from 1998 through 2011 of the zonally averaged air-sea flux
density (mol C m−2 yr−1 ) for the four major ocean basins, namely the Pacific Ocean, the Atlantic Ocean, the Southern
Ocean, and the Indian Ocean. Negative or blue values indicate uptake of CO2 by the ocean.

The seasonal cycle of the zonally averaged CO2 flux density of the Pacific Ocean north of 44◦S shows that
the equatorial Pacific is a strong outgassing region throughout the entire year, linked to the upwelling of
carbon-rich waters from deeper layers. There is a distinct seasonal cycle in the lower latitudes (equatorward
of 40◦N and 40◦S) of both hemispheres resulting in wintertime uptake of CO2 by the ocean and summertime
outgassing. The seasonal cycle in the high-latitude North Pacific (north of 40◦N) is antiphased compared
to that in the subtropical cycle. This is the result of a poleward transition from a temperature-controlled
seasonal cycle with a pCO2 maximum in summer to one that is controlled by biological drawdown in sum-
mer and physical resupply of CO2 from deeper layers in winter, giving rise to a pCO2 maximum in winter
[Takahashi et al., 2002; Sarmiento and Gruber, 2006].

The mean seasonal cycle of the flux density in the Atlantic Ocean (44◦S–79◦N and west of 30◦E) is largely
unchanged from that reported by Landschützer et al. [2013] despite the addition of data from 2008 through
2011 (Figure 7). The seasonal cycle is also very similar to that of the Pacific Ocean, as both basins are
stretching along similar latitudes. However, there are significant differences. The equatorial band of the
Atlantic Ocean shows lower flux densities throughout the entire year than that of the Pacific Ocean. Further-
more, the band from 40◦N to 60◦N has a much larger seasonal amplitude in the Pacific Ocean than in the
Atlantic Ocean.

The CO2 flux density in the Southern Ocean (south of 44◦S) follows a clear seasonal pattern, with CO2 uptake
in the Southern Hemisphere summer (December to March). In contrast, there is outgassing of CO2 from 50◦S
to 65◦S in the Southern Hemisphere winter (July to October). Only a small band in the northern part of this
basin (from 44◦S to 50◦S) remains an uptake region all year round.

The seasonal cycle of the Indian Ocean (north of 44◦S) flux density (Figure 7) reveals a distinct equatorial
CO2 source from 10◦N to 10◦S throughout the entire year. Further to the north, the neural network estimates
identify a high CO2 outgassing region from October to May with an additional monsoon-driven [see, e.g.,
Sarma et al., 2013] flux increase from May to October. South of the equator the Indian Ocean has a similar
seasonal flux pattern compared to that in the South Atlantic and the South Pacific.

In contrast to the long-term mean, there is less agreement between our SOM-FFN-based flux estimates and
those of Takahashi et al. [2009] with regard to the seasonality of the sea surface pCO2. Figure 8 reveals that
in particular in the high-latitude North Pacific, North Atlantic, and the northern Indian Ocean, zonally aver-
aged differences exceed ±20 μatm leading to substantially larger seasonal amplitudes in these areas in our
estimates. Given the high level of temporal and spatial smoothing applied by Takahashi et al. [2009] to map
their data, their lower level of seasonal variations is not unexpected; however, it has to be noted here that

LANDSCHÜTZER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 939



Global Biogeochemical Cycles 10.1002/2014GB004853

Figure 8. Zonally averaged difference between the SOM-FFN and the Takahashi et al. [2009] pCO2 seasonal cycle for
the four major ocean basins, namely the Pacific Ocean, the Atlantic Ocean, the Southern Ocean, and the Indian Ocean.
The SOM-FFN seasonal cycle was corrected to the reference year 2000, as explained in the text, to be comparable to the
Takahashi et al. [2009] climatology.

the SOM-FFN also has the largest residuals in these areas. In contrast, within the low latitudes, differences
are well within 10 μatm.

6. Interannual Variability

Our SOM-FFN-based global contemporary air-sea flux exhibits a modest level of year-to-year variability
from 1998 through 2011 with a minimum carbon uptake of −0.80 ± 0.52 Pg C yr−1 in 2001 and a maximum
uptake of −2.01 ± 0.59 Pg C yr−1 in 2011 and with a standard deviation of the deseasonalized and detrended
(to separate the effect of short-term trends) monthly fluxes of (±0.12 Pg C yr−1). This confirms the results of
many previous studies that the amount of interannual variability of the ocean sink is small [Battle et al., 2000;
Le Quéré et al., 2000, 2003; Wanninkhof et al., 2013a], but substantial differences in the annual mean flux arise
from trend signals. The most recent estimate by Rödenbeck et al. [2014] of ±0.31 Pg C yr−1 suggests a twice
as large value; however, this latter estimate is for the 1993–2008 period, which includes the largest El Niño
event of the past decades, i.e., the 1997/1998 event.

Nearly all of the interannual variability of the air-sea CO2 fluxes is driven by changes in the surface ocean
pCO2, and little by changes in the gas transfer velocity. We tested this by keeping the Δ pCO2 constant for
the entire time period, applying the 14 year monthly average Δ pCO2 values for each year individually. The
resulting annual mean gas fluxes range from −1.35 Pg C yr−1 to −1.50 Pg C yr−1, i.e., the peak-to-peak vari-
ability is only ∼ 13% from the observed peak-to-peak variability with variable Δ pCO2. We thus focus our
further discussion on the oceanic pCO2-induced variability only.

In order to investigate the regions driving the global pCO2 variability, we deseasonalized our pCO2 fields
using a 12 month running average filter and detrended them by removing the linear trend for each grid
cell from 1998 through 2011. The map of the standard deviation of the resulting interannual sea sur-
face pCO2 anomalies (Figure 9a) reveals the strongest variability within the equatorial Pacific and the
high-latitude Atlantic and Pacific Ocean, confirming previous model-based [e.g., McKinley et al., 2004]
and observation-based [Rödenbeck et al., 2014] findings that have identified these regions as hot spots of
interannual variability.

An empirical orthogonal function (EOF) analysis of the interannual anomalies of pCO2 illustrates that most
of this variability in the western equatorial Pacific is of a coherent nature, i.e., is organized to form the glob-
ally leading EOF mode (Figure 9b) explaining 28% of the global variability in surface ocean pCO2. Due to
the size of the pCO2 covariance matrix needed to compute the EOFs, we had to coarsen the SOM-FFN pCO2

estimates from their original 1◦×1◦ resolution to 2◦×2◦. Tests over smaller domains revealed that this coars-
ening had no impact on the results. The time series of this leading global EOF, i.e., its principal component,
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Figure 9. Variability of the sea surface pCO2 illustrated as (a) the 1998 through 2011 standard deviations of the inter-
annual anomalies of surface ocean pCO2 fields (obtained by deseasonalizing and detrending the data), (b) the spatial
distribution of the amplitude of the first (leading) empirical orthogonal function (EOF) of the interannual anomalies of
pCO2 (data are rescaled to 2◦ longitude × 2◦ latitude), and (c) the time series of the leading EOF’s of the western equa-
torial Pacific (WEQP, 15◦S to 15◦N and west of 160◦W) and the global ocean compared to the Multivariate ENSO Index
[Wolter and Timlin, 2011]. The green areas highlight positive Multivariate ENSO Index (MEI) phases.
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Figure 10. Seasonal and annual mean fluxes from 1998 to 2011 for the four major ocean basins, (a–c) the Pacific Ocean (green areas highlight positive MEI
phases), (d) the Atlantic Ocean, (e) the Southern Ocean, and (f ) the Indian Ocean. Dark blue shows the results for the Northern Hemisphere winter months
(December-January-February), light blue the spring months (March-April-May), light red the summer months (June-July-August), and dark red the autumn
months (September-October-November). The annual mean flux is plotted as a black line on top. Error bars indicate the uncertainty range of the air-sea flux
estimate in section 3.3.

is highly correlated (r = 0.85) with the Multivariate ENSO Index (MEI, http://www.esrl.noaa.gov/psd/enso/
mei/ [Wolter and Timlin, 2011]), confirming the dominant role of ENSO for controlling interannual variability
in global air-sea CO2 fluxes. The dominance is even larger when we perform an exclusive EOF for the west-
ern equatorial Pacific area (15◦S to 15◦N and west of 160◦W), where the leading EOF explains 72% of the
variance. In contrast to the first global EOF mode, the second and third EOF modes (15% and 10%) reveal
relatively little large-scale spatial coherence and are therefore neither shown nor discussed here. Next, we
discuss the interannual variations in each basin in turn.

6.1. Pacific Ocean
With an interannual variability of the air-sea CO2 flux of ±0.11 Pg C yr−1 (± 1 standard deviation), the Pacific
Ocean north of 44◦S dominates the global ocean flux variability. From 1998 through 2011 the Pacific flux
varied from an uptake minimum of −0.11 ± 0.25 Pg C yr−1 in the year 2000 to an uptake maximum of
−0.59 ± 0.23 Pg C yr−1 in 2006. As suggested already by the EOF analysis, Figures 10a–10c show that most of
this variability stems from the equatorial region, with the strong reduction in the whole Pacific sink strength
in the early 2000s having been caused by the stronger than usual outgassing in the equatorial subregion
owing to the strong La Niña that occurred there after the 1997/1998 El Niño (Figure 10b). But also the more
moderate fluctuations in the equatorial Pacific after 2000 largely reflect the impact of ENSO, with years hav-
ing positive anomalies of the MEI characterized by weaker outgassing and vice versa for negative anomalies.
These ENSO-induced fluctuations are in excellent agreement with the findings of Feely et al. [2006], who
analyzed ENSO-induced variations in the equatorial Pacific over a more extended period.

The ENSO cycles in the last 20 years tended to have their maximum anomalies in sea surface temperature in
the central equatorial Pacific and to a lesser degree in the eastern equatorial Pacific as was the norm before
Fedorov and Philander [2000], a pattern often referred to as El Niño Modoki [e.g., Ashok et al., 2007]. The spa-
tial pattern of the interannual standard deviation and of the leading EOF (Figure 9) clearly reflect this central
Pacific ENSO pattern as well. It is thus instructive to split this area at 175◦W in order to separately analyze
the variability in the western Pacific warm pool and the eastern equatorial upwelling area. Furthermore, it
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Figure 11. Temporal evolution of the interannual pCO2 anomalies
(a) in the western equatorial Pacific (10◦S to 10◦N; 165◦E to 175◦W) and
(b) in the central and eastern equatorial Pacific (10◦S to 10◦N; 175◦W
to 90◦W). The black line shows the spatial average pCO2 within each
box and the associated spatial standard deviation is marked with a
grey shade. Blue circles depict the average observed sea surface pCO2
anomaly within each box (calculated from the SOCAT v2-gridded data)
and the red triangles show the average neural network pCO2 colo-
cated to these measurements. (c) The interannual pCO2 anomaly of each
of the western equatorial Pacific (WEQP) and the eastern equatorial
Pacific (EEQP) (left axis in μatm = detrended and smoothed using a 12
month running average filter) is compared to the MEI index (right axis =
smoothed using a 12 month running average filter as well and reversed
for better comparison). The green areas highlight positive MEI phases.

behooves us to demonstrate how
well the SOM-FFN-based estimates
are able to capture the observed
pCO2 variability through time in these
two subregions.

Figures 11a and 11b illustrate the
large interannual pCO2 anomalies in
each of these two boxes, but also how
well the colocated SOM-FFN-based
pCO2 anomalies are able to capture
the observed anomalies, especially
their interannual fluctuations. The
interannual pCO2 anomalies of the
observations were computed by
subtracting the SOM-FFN long-term cli-
matological value for that month and
grid cell. The high temporal density
of the observations and the good fit
permit us to have relatively high confi-
dence in the SOM-FFN-based estimates
of the interannual pCO2 variability in
the equatorial Pacific.

There is, however, also a tendency
for the SOM-FFN-based estimates
to underestimate the observed vari-
ations, but this occurs primarily on
monthly to seasonal timescales, where
tropical instability waves [Feely et al.,
1994], individual Kelvin waves, and
other physical perturbations alter sur-
face ocean pCO2 in a manner that our
approach is not able to capture. When
the differences between the SOM-FFN
and the observed anomalies are com-
puted over the full annual cycle by
removing the SOM-FFN 14 year mean
seasonal cycle, no temporal structure in
the bias emerges, thus giving us good
confidence in our estimates capturing
the interannual variations.

The spatially averaged interannual pCO2 variations in both the eastern and western equatorial Pacific box
have a very high correlation with the multivariate ENSO index (r = 0.74 and r= 0.89) (Figure 11c), confirm-
ing our EOF-based analyses above, which suggested that 72% of the variance in the equatorial Pacific is
linked to ENSO. The even somewhat higher correlation in the western equatorial Pacific reflect also the more
Modoki-style ENSO dominance over the last 20 years.

The year-to-year flux variability in the extratropical Pacific is much smaller than that in the equatorial band
(Figure 10), but within the 14 year period still substantial, especially in the North Pacific, where the minimum
minus maximum annual fluxes differ by ∼0.3 Pg C yr−1. This variability pattern is weakly correlated to the
Pacific Decadal Oscillation index [Mantua et al., 1997].

6.2. Atlantic Ocean
The variability and trends of the Atlantic Ocean north of 44◦S have been discussed by Landschützer et al.
[2013] for the time period 1998 through 2007, so we focus here only on those aspects that emerge by the
extension of the time period to December 2011. Small additional changes emerge in the years before 2007
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due to the addition of new data in the SOCAT v2 data set, in particular for the years 2005 to 2007 [Bakker
et al., 2014]. Figure 10d shows a close to steady carbon flux from 1998 through 2003, followed by a trend
toward an increasing carbon sink until 2011, when the uptake peaks with a flux of −0.71 ± 0.16 Pg C yr−1.
Thus, the trend toward a stronger Atlantic sink identified by Landschützer et al. [2013] is found to persist
through 2011 and even starts 1 year earlier than originally diagnosed. The standard deviation of the interan-
nual variability of ±0.03 Pg C yr−1 is low across the basin and also within each hemisphere, in line with the
prior results [Landschützer et al., 2013].

On average, the uptake fluxes of the North Atlantic exceed the uptake fluxes of the South Atlantic (see
Table 3). Both basins, however, undergo similar year-to-year changes with both basins having had the weak-
est sink in 2001 (−0.33 ± 0.12 Pg C yr−1 in the Northern Hemisphere and −0.03 ± 0.11 Pg C yr−1 in the
Southern Hemisphere) and the strongest sink in 2011 (−0.51 ± 0.15 Pg C yr−1 in the Northern Hemisphere
and −0.19 ± 0.13 Pg C yr−1 in the Southern Hemisphere), leading to a peak-to-peak flux difference of almost
0.2 Pg C yr−1 in both hemispheres.

6.3. Southern Ocean
The Southern Ocean, defined here as the ocean south of 44◦S, is the largest of the four basins and
remains strongly undersampled with respect to its large surface area (see Figure 2). Thus, it remains
the basin with the weakest observational constraints and thus in relative terms the ocean area with the
largest uncertainties.

The annual mean SOM-FFN pCO2-based flux estimates for the Southern Ocean have the largest range of all
basins, varying between an absolute minimum of −0.02 ± 0.10 Pg C yr−1 in 2001 and an absolute maximum
of −0.57 ± 0.13 Pg C yr−1 in 2011 (Figure 10e). Despite this considerable range, the standard deviation of
the interannual variability of ±0.06 Pg C yr−1 is relatively modest, largely owing to the gradual nature of the
flux variations.

The Southern Ocean carbon sink weakened from 1998 to 2001, but then the trend reversed sign and the
sink strengthened substantially until 2011 (Figure 10e). A possible explanation for this recent reinvigoration
of the Southern Ocean carbon sink after a long-term weakening trend [Le Quéré et al., 2007] is the change
in the Southern Annular Mode, as it recently tended to become neutral or even negative following the 1998
maximum [Marshall, 2003]. A high-index polarity of the Southern Annular Mode (SAM) leads to an increase
of the westerly winds resulting in stronger upwelling, which increases the surface ocean pCO2 and hence
the outgassing of CO2 [Lovenduski et al., 2007; Lenton and Matear, 2007]. The recent trend toward a lower
SAM index thus creates the opposite tendency, i.e., an increase in the uptake of CO2, as suggested by Fay
and McKinley [2013].

Overall, our Southern Ocean mean flux compares fairly well with the Takahashi et al. [2009] observation-
based estimate from Lenton et al. [2013] and slightly worse to the recalculated Takahashi et al. [2009] based
flux estimate in Table 3 of this study (−0.21±0.11 Pg C yr−1 in this study compared to −0.27 ± 0.13 Pg C yr−1

in Lenton et al. [2013] and −0.32 in Table 3).

6.4. Indian Ocean
Compared to the other ocean basins, the Indian Ocean shows the lowest year-to-year variability (Figure 10f ),
with a maximum CO2 uptake in 2009 of −0.41 ± 0.09 Pg C yr−1 and a minimum uptake in 1998 of
−0.25 ± 0.07 Pg C yr−1. This basin further shows the weakest increase in the carbon sink compared to the
other basins from 1998 through 2011. The interannual variability is estimated to be ±0.02 Pg C yr−1 and is
substantially smaller than, e.g., in the Pacific Ocean.

6.5. The Global Ocean
In order to better compare our SOM-FFN-based estimates of the contemporary air-sea CO2 flux with
model-based results as well as other estimates, we need to include a flux value for the Arctic and need to
make a correction for the outgassing of riverine carbon. We use the same values as above (Arctic uptake flux
of −0.12 Pg C yr−1 [Schuster et al., 2013] and river outgassing of 0.45 Pg C yr−1 [Jacobson et al., 2007]), but fur-
ther assume that these fluxes are not changing over the 1998 through 2011 period. The long-term mean of
this adjusted flux corresponds essentially to the oceanic uptake of anthropogenic CO2 (see above), but the
interannual variations are likely driven by natural CO2 uptake.
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Figure 12. Comparison of the annual integrated anthropogenic CO2
flux based on the SOM-FFN approach (black line) with model and
observation-based results included in the Global Carbon Budget and
the RECCAP ocean studies (references in the text). Light shading illus-
trates the uncertainty interval of the SOM-FFN estimate for each year
and dark shading illustrates the estimated anomaly uncertainty (see
section 3.3).

The evolution of the thus adjusted
global uptake of CO2 is illustrated in
Figure 12 in comparison to recent obser-
vation and model-based estimates
[Rödenbeck et al., 2014; Park et al., 2010;
Galbraith et al., 2010; Ilyina et al., 2013;
Assmann et al., 2010; Doney et al., 2009b;
Aumont and Bopp, 2006; Buitenhuis et al.,
2010; Matear and Lenton, 2008; Graven et
al., 2012b] included in the Global Carbon
Project (www.globalcarbonproject.org)
and additional model-based estimates
from the RECCAP project ocean studies.
Our SOM-FFN-based global CO2 uptake
estimate exhibits modest year-to-year
variability within the period from 1998
through 2011 with a minimum carbon
uptake of −1.37 ± 0.57 Pg C yr−1 in
2001 and a maximum uptake of
−2.58 ± 0.60 Pg C yr−1 in 2011 (see

Figure 12). The SOM-FFN estimate is on the lower end of all estimates in the first year of the analysis period,
but shows a substantially stronger sink trend from 2001 onward.

The linear trend evolving within this 14 year time period (linear fit to the estimates, smoothed using a 12
month running mean filter) is estimated to be −1.00 ± 0.12 Pg C yr−1 decade−1. The uncertainty of the trend
is estimated as the standard deviation of the trend residuals (the smoothed estimates minus the SOM-FFN
estimates along the fitted linear trend line). When only the start and end year annual mean CO2 flux is taken
into account, the trend reduces to −0.60 Pg C yr−1 decade−1 or roughly decreases by 40%, indicating that
the global mean trend over such a short time period is strongly influenced by the interannual variabil-
ity and not necessarily part of an interdecadal trend signal [McKinley et al., 2011; Fay and McKinley, 2013].
Nevertheless, it is intriguing to see that our SOM-FFN-based estimate shows a much larger trend in the
recent decade than the model-based estimates.

The most directly comparable estimates by Park et al. [2010] and Rödenbeck et al. [2014] turn out to have rel-
atively similar long-term mean ocean uptake, but rather different levels of interannual variability and trend.
The Park et al. [2010] estimate, which is based on extrapolating the seasonal sea surface temperature-pCO2

relationship to the interannual timescale, has the lowest level of variability and trend. In contrast, the flux
estimate by Rödenbeck et al. [2014], who assimilate surface ocean pCO2 observations with a surface mixed
layer scheme has the largest level of variability. Our estimate is in-between these two extremes, although in
closer agreement with those of Rödenbeck et al. [2014] who also used SOCAT v2, although extrapolated the
observations with a completely different approach.

7. A Global Carbon Budget (1998 Through 2011)

Our observation-based estimate of the ocean sink CO2 (without the Arctic Ocean and the river outgassing
flux) permits us to construct an annual global carbon budget for the years 1998 through 2011. We hereby
implicitly assume, as above, that the river-induced carbon outgassing by the ocean and the Arctic fluxes
remain unchanged throughout this period.

The Global Carbon Project in their recent global carbon budget (year 2014 version 2.3) reports global carbon
emissions from fossil fuel burning (Emff [Marland et al., 2005; http://cdiac.ornl.gov/trends/emis/meth_reg.
html]) and the atmospheric accumulation rate ( dNatm

dt
[Ballantyne et al., 2012; Ed Dlugokencky and Pieter Tans,

NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/]). With these values, we can estimate the global net land
flux (Fnet

land) by difference:

Fnet
land = Emff − Focean −

dNatm

dt
(3)
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Figure 13. Annual mean global carbon budget calculated from the
SOM-FFN results as (a) the sum of sources (positive) and sinks (nega-
tive) for each year from 1998 through 2011 and (b) the residual total
land flux (with light green uncertainty shading) calculated from the
SOM-FFN ocean flux compared to the total land flux derived from the
Global Carbon Project and the mean model ensemble of the terrestrial
models included in the Global Carbon budget [Le Quéré et al., 2014].
Note that the land and ocean fluxes in this budget do not include the
steady state carbon fluxes associated with the land-ocean aquatic con-
tinuum [Regnier et al., 2013], i.e., the uptake of carbon over land to feed
the carbon loss through rivers into the ocean, where it outgasses to
the atmosphere.

where the net land flux does not include
the CO2 uptake component needed to
compensate for the lateral carbon loss
to the ocean by rivers (see Regnier et
al. [2013] for further discussions of this
land-ocean aquatic continuum). This net
land flux estimate can further be used
to calculate the total land CO2 uptake
flux when subtracting land use change
(Emluc [Houghton, 2003; http://cdiac.
ornl.gov/trends/emis/meth_reg.html]):

Ftot
land = Fnet

land − Emluc (4)

Figure 13a shows the annual mean car-
bon budget derived from this study as
the sum of sources and sinks, i.e., fossil
fuel emissions, atmospheric accumula-
tion of CO2, the carbon uptake flux by
the global ocean, and the net land flux
(total land flux plus land use change).
Figure 13b compares our inferred total
land sink estimate to the results pre-
sented by the Global Carbon Project (the
implied land sink from ocean models
and the mean of all land models), illus-
trating the strong agreement regarding
the year-to-year variability, but also
reflecting differences which stem from
the different ocean flux estimates.

There is little doubt that the estimated
SOM-FFN net land sink (Fnet

land) is sub-
ject to much stronger variability than
the ocean carbon sink, ranging from a
net outgassing flux in the post El Niño
year of 1998 of 1.12 ± 0.64 Pg C yr−1

to a strong sink of −3.33 ± 0.77 yr−1 in 2011 (Figure 13). Throughout the period 1998 through 2011, land
use change describes a fairly constant source of carbon, leading to a total land flux (Ftot

land) ranging from
−0.36 ± 0.87 Pg C yr−1 in 1998 to −4.06 ± 1.01 Pg C yr−1 in 2011.

Average fossil fuel emissions and land use change combined through this time period are
8.94 ± 0.64 Pg C yr−1; hence, the ocean was taking up on average roughly 22% of the global emitted CO2

from 1998 through 2011. On average, the atmospheric accumulation rate was −4.13 ± 0.17 Pg C yr−1, and
the resulting average total land flux was −2.82 ± 0.85 Pg C yr−1, hence roughly 46% of the emitted carbon
accumulated in the atmosphere, while about 32% of the emitted carbon was taken up by land from 1998
through 2011 on average.

This is in agreement with the recent carbon budget of Le Quéré et al. [2014], reported from 2003 through
2012, with the difference stemming from the ocean flux component, which in Le Quéré et al. [2014] was
estimated to be −2.5 ± 0.5 Pg C yr−1, largely based on model simulations that had been scaled to match the
anthropogenic CO2 uptake flux estimated by the Ocean Inversion Project of 2.2 Pg C yr−1 for a nominal year
of 2000 [Mikaloff Fletcher et al., 2006].

8. Summary and Conclusions

Here we present results regarding the mean, seasonal, and interannual variability of the air-sea CO2 fluxes
based on a recently developed neural network-based method [Landschützer et al., 2013], which enables us
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to estimate the sea surface pCO2 on a monthly timescale at a high spatial resolution of 1◦×1◦. Thanks to
its using information from similar, but data richer regions to estimate the pCO2 in data-poor regions, our
two-step neural network approach is able to produce relatively robust estimates globally, but it does not
allow for a direct connection to processes. Our results show that it is now possible with the current net-
work of surface pCO2 observations to constrain the mean of the global ocean carbon sink within about
± 0.5 Pg C yr−1 and its interannual anomalies to within about ± 0.3 Pg C yr−1. The analysis of our residuals
show that they are in good agreement with observations from the SOCAT v2 database, and further compare
well with independent data. Results for 1998 through 2011 suggest a mean contemporary uptake flux of
−1.42 ± 0.53 Pg C yr−1, which is in line with results from existing studies, particularly that by Takahashi et al.
[2009]. This suggests that there is a good consensus regarding the long-term mean flux of CO2. Our results
reveal also that the global ocean CO2 sink undergoes considerable year-to-year and intradecadal changes.
From 1998 through 2011 we estimate a trend toward an increasing carbon sink of −1.00 ± 0.12 Pg C yr−1

decade−1, which is, however, strongly influenced by interannual signals and therefore not yet a good esti-
mate of a multidecadal trend. During our study period, the Pacific Ocean shows the largest interannual
variability of ±0.11 Pg C yr−1. This signal is driven by ENSO, which we find to be the dominant mode of the
global variability in the ocean carbon sink. Our results further illustrate the constraint that the surface ocean
pCO2 measurements provide to close the global carbon budget.
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