Drakkar Forcing Set #3 : A global and inter-annual forcing dataset for NEMO

DRAKKAR meeting, January 2007, Grenoble

Laurent Brodeau

OUTLINE

- Overview of the DFS3

 presentation
 precipitation set (DPS3)
 ERA40 extension after 2001

 ORCA2 simulations
 - comparison of 3 runs
- Prospect and technical aspects
 - future improvement
 - θ and q : at 2m or 10m?
 - getting started with the DFS3

DFS3 : Needed input files for bulk forcing

The 3 main air/sea fluxes and the variables implied in their estimation through bulk formulae.

\rightarrow 3 sets of input variables :

Turbulent	Radiative	Fresh water
set	set	set

	Variable	Name	Origine	Freq.
	Wind (10m)	\mathbf{U}_{10} , \mathbf{V}_{10}	Reanalyzes	6H
CORE	ORE Air temperature (10m or 2m)		Reanalyzes	6H
pattern	Air Spec. hum. (10m or 2m)	Q air	Reanalyzes	6H
	Downw. Radiative fluxes		Satellite	24H
	Precipitation, runnofs	P , R	Misc.	mens.

DFS3 : An adaptation of CORE

DFS3 : Drakkar Precipitation Set 3

Motivation :

- Less fresh water injected into the northern ocean
- Enhance the north Atlantic MOC
- Minimize the global ocean rise

DFS3: 2001/2002 ERA40/ECMWF transition

We need to extend turbulent set until now! But : ERA40 ends in 2002

\rightarrow extend using ECMWF product

DFS3: 2001/2002 ERA40/ECMWF transition

Globally acceptable transition, except for humidity under the tropics. This is a known ERA40 bias and is corrected in ECMWF.

Run	Turbulent set	Precip. set	Radiative set
ORCA2-G57	CORE	CORE	ISCCP
ORCA2-G58	CORE	DPS3	ISCCP
ORCA2-G70	ERA40	DPS3	ISCCP

The rest of the config for each of these runs is "G70" !

ORCA2 : Comparing 3 runs

Mean SSH

Mean T

Weaker winds = less evaporation

Weaker winds = less vertical mixing?

ORCA2 : Comparing 3 runs

Maximum Atlantic MOC

MHT from surface fluxes

Improvement is mainly due to the switch from NCEP to ERA40 for surface atmospheric variables! The introduction of DPS3 has a minor impact on global trends except on the rise of the ocean.

ORCA2 : Transports

Weaker winds = weaker wind-driven circulation ! How can a decrease of precipitation on the northern ocean affect the ACC that much? \rightarrow Changing the precipitation pattern can lead to really unexpected effects!

Prospect : Future improvement

Correction of the equatorial bias of q_{air} in ERA40, for the period 1958-2001. This moist bias seems responsible for the excessive SST in this region.

SST model vs SST obs on Nino boxes

Tech : θ_{air} and $q_{air} \rightarrow 2m \text{ or } 10m ?$

<u>Run **ORCA2-G702Z**</u>: clone of ORCA2-G70, θ_{air} and q_{air} are given at 2m (instead of 10m) and corrected online via the bulk procedure.

http://www-meom.hmg.inpg.fr/DRAKKAR/TOOLS/

File Edit View History Bookmarks Tools Help	
MGmail Goodies Mails MEOM News Free Fluxes Physics Util Math Getting started with the DFS#3 Interpolation and preparation of the input fields on your own grid : • Download the interpolation package: <u>WORK_INTRP.tar.gr</u> • On gaya@idris.fr, input fields can be found into : /u/rech/cli/rcli544/DFS3/	
Getting started with the DFS#3 Interpolation and preparation of the input fields on your own grid : • Download the interpolation package: WORK_INTRP.tar.gz • On gaya@idris.fr, input fields can be found into : /u/rech/cli/rcli544/DFS3/	
Interpolation and preparation of the input fields on your own grid : • Download the interpolation package: <u>WORK_INTRP.tar.gr</u> • On gaya@idris.fr, input fields can be found into : /u/rech/cli/rcli544/DFS3/	
 Interpolation and preparation of the input fields on your own grid : Download the interpolation package: <u>WORK_INTRP.tar.gz</u> On gaya@idris.fr, input fields can be found into : /u/rech/cli/rcli544/DFS3/ 	
 Download the interpolation package: <u>WORK_INTRP.tar.gz</u> On gaya@idris.fr, input fields can be found into : /u/rech/cli/rcli544/DFS3/ 	
Updated version of the bulk forcing routine : <u>flx_core.h90</u>	=
Vamcore : namelist section to be used with <u>flx_core.h90</u> !	_
l namcore CORE	
<pre>! ln_2m : Whether air temperature and humidity are provided at 2m ! ln_kata : Logical flag to tke into account katabatic winds enhancement ! alpha_precip : Multiplicative factor for precip. (use with moderation !) &namcore</pre>	
<pre>ln_2m = .false. ln_kata = .false. alpha_precip = 1.0 /</pre>	

ORCA2 : Net heat flux, G70 vs G58

$Q_{net}(G70) - Q_{net}(G58) \equiv ERA40 \text{ vs CORE}$

DRAKKAR meeting January 2007 DRAKKAR Forcing Set #3 - Laurent Brodeau