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Abstract

In this report we present the findings of the NEMO dCSE project which investi-
gated the performance of a popular ocean modelling code, NEMO, on the Cray XT4
HECToR system.

Two different versions of NEMO (2.3 and 3.0) have been compiled and tested
on HECToR. The performance of these versions has been evaluated and an optimal
processor count suggested. The NEMO code is found to scale up to 1024 processors
with the best performance in terms of AU usage being obtained between 128 and 256
processors. Square grids are found to give the best performance and where these
cannot be used, choosing the grid dimensions such that jpni < jpnj is found to
give the best performance. The removal of land only cells reduces the number of
AU’s by up to 25% and also gives a small reduction in the total runtime.

NetCDF 4.0, HDF5 1.8.1, zlib 1.2.3 and szip have been installed and tested.
NetCDF 4.0 is found to give considerable reduction to both the amount of I/O and
time taken in I/O when using the NOCSCOMBINE tool. The version of netCDF 4.0
installed under this dCSE project is 8-20% faster than the version installed centrally
(via modules) on the system. NEMO has been adapted to use netCDF 4.0 for its
main output files resulting in a reduction in file size of up to 3.55 times relative to
the original code.

Nested models have also been investigated. The BASIC nested model has been
compiled and tested and problems with the time step interval identified and rectified.
The performance of the BASIC model has been investigated and an optimal processor
count (in terms of AU usage) found to be 32.
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1 Introduction

This Distributed Computational Science and Engineering (dCSE) project is to investigate
and where possible improve the I/O performance and nested model performance of the
NEMO [1] ocean modelling code.

1.1 The NEMO dCSE Project

The NEMO dCSE project commenced on 1st March 2008 and is scheduled to end on
the 30th April 2009. The principal investigator on the grant was Dr Andrew Coward
from the National Oceanographic Centre, Southampton (NOCS). Dr Chris Armstrong
at NAG provided help and support from the CSE side.

The project comprised of two work packages (referred to as WP1 and WP2), one
concerned with improving the I/O performance of NEMO and one which involved inves-
tigating and improving the performance of nested models within NEMO. The motivation
for investigating these two subject areas are discussed below.

1.1.1 I/O performance

The way in which data is currently input/output to NEMO is not considered ideal for
large numbers of processors. As researchers move to use increasingly more complex
models at high spatial resolutions larger numbers of processors will be required and this
potential I/O bottleneck will therefore need to be addressed. WP1 involves investigating
the current scaling and I/O performance of NEMO and identifying methods to improve
this via the use of lossless compression algorithms within the NEMO model.

1.1.2 Nested model performance

The NEMO code allows nested models to be used which enable different parts of the
ocean to be modelled with different resolution within the same global model. E.g. an
area of the Pacific Ocean could be model at 1 degree resolution with the remainder of
the Earth’s Oceans being modelled at 2 degree resolution. This type of modelling can
help scientists to gain a better insight into particular ocean features whilst keeping the
computational costs reasonable. In the past, setting up such models has been very time
consuming and relatively few attempts have been made to run such configuration on
high performance computing systems. In WP2 we aim to investigate the performance of
such nested models and to improve the performance subject to our findings. Our main
goal is to achieve a stable and optimised nested model with known scalability.

2 What is NEMO?

NEMO (Nucleus for European Modelling of the Ocean) is a modelling framework for
oceanographic research and operational oceanography. The framework allows several
ocean related components e.g. sea-ice, biochemistry, ocean dynamics, tracers etc to work
either together or separately. Further information on NEMO and its varied capabilities
can be found at, [1].

The NEMO framework currently consists of three components each of which (except
for sea-ice) can be run in stand-alone mode. The three components are:
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• OPA9 - New version of the OPA ocean model, FORTRAN90

• LIM2 - Louvain-la-Neuve sea-ice model, FORTRAN90

• TOP1 - Transport component based on the OPA9 advection-diffusion equation
(TRP) and a biogeochemistry model which includes the two components LOB-
STER and PISCES.

This report focuses primarily on the OPA9 component and uses a version of the
NEMO code which has been modified by the National Oceanography Centre, Southamp-
ton (NOCS) researchers. The NOCS version of NEMO is essentially the release version
with NOCS specific enhancements. Two different versions of NEMO are discussed, ver-
sion 2.3 and version 3.0. The initial work on the project involved version 2.3 and when
version 3.0 became available (autumn 2008) work continued using this version.

3 HECToR

3.1 Introduction

HECToR is the UK’s new high-end computing resource available for researchers at UK
universities. The HECToR Cray XT5 system began user service in October 2007 and
consists of a scalar (XT4) and a vector (X2) component. This project uses only the
scalar component.

3.2 Architecture

The scalar XT4 component comprises 1416 compute blades, each of which has 4 dual-core
processor sockets amounting to a total of 11,328 cores which can be accessed indepen-
dently. Each dual-core socket consisting of a single dual-core processor is referred to as
a node. The processor used is an AMD 2.8 GHz Opteron. Each dual-core node shares 6
GB of memory. The theoretical peak performance of the system is 59 Tflops.

Each of the AMD Opteron cores has a floating point addition unit and a floating
point multiplication unit. These units are independent of each other which means that
an addition and a multiplication operation can take place simultaneously. The processor
is capable of completing a single floating point operation from each of these units per
cycle. Given the clock speed of 2.8 GHz this gives us a theoretical peak performance of
2 * 2.8 = 5.6 Gflops per core or 11.2 Gflops per dual core for double precision floating
point operations.

The caches on each core are private. Unlike many systems there are no shared caches
on HECToR. Each core has a separate 2-way set associative level 1 cache of 64 kB. The
level 2 cache is a 16-way combined data and instruction cache totalling 1 MB. Both the
level 1 and 2 caches use 64 byte cache lines, equating to eight double precision words.
The level 2 cache acts as a victim cache for the level 1 cache which means that data
evicted from the level 1 cache gets placed onto the level 2 cache.

3.3 Modes of operation

When running jobs on the system users can choose whether they wish to run in single
node (SN) mode or virtual node (VN) mode. In SN mode only one of the dual core
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processors will be utilised leaving the second core idle. In this case all 6 GB of memory
will be available to the single core. In VN mode both of the cores are used and the
memory gets shared between them, making 3 GB available to each core. At present
the 6 GB memory is composed of one 2 GB and one 4 GB dimm which means round-
robining or stripping of memory is not possible. For codes which are memory bound
their performance may be adversely affected as a result. In future it is hoped that the
system will be re-configured to provide a symmetric memory distribution, e.g. two 2 GB
or two 4 GB dimms.

3.4 Communication and I/O networks

The nodes communicate via a high bandwidth interconnect which uses the Cray SeaStar2
communication chips. Each dual core processor has its own private SeaStar2 chip which
is connected directly into its HyperTransport link. The SeaStar chips are arranged on
a 3-dimensional torus with dimensions 20 x 12 x 24. Each SeaStar2 chip provides high
speed links to its 6 neighbours (see figure 1). Each link is capable of delivering a peak
bi-directional bandwidth of 7.6 GB/s.

Figure 1: Diagram illustrating the directionality of the 6 links coming from each SeaStar2
chip.

In addition to the compute nodes there are also dedicated I/O nodes, login nodes
and nodes set aside for serial compute jobs. The login nodes can be used for editing,
compilation, profiling, de-bugging, job submission etc. When a user connects to HECToR
via ssh the least loaded login node is selected to ensure that users are evenly loaded across
the system and that no single login node ends up with an excessive load.

HECToR has 12 I/O nodes which are directly connected to the toroidal communica-
tions network described above. These I/O nodes are also connected to the data storage
system (i.e. physical disks). The data storage on HECToR consists of 576 TB of high
performance RAID disks. The service uses the Lustre distributed parallel file system to
access these disks.

3.5 Operating systems

The service nodes (i.e. login and I/O) run SUSE Linux. The compute nodes run a
lightweight Linux kernel called the Cray Linux Environment, or CLE. CLE was formally
known as Compute Node Linux (CNL) and some documentation may still refer to this.
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CLE is essentially a stripped down version of Linux (c.f. Blue Gene’s compute node
kernel, CNK). It is designed to be extremely lightweight so as to limit the number of
interruptions from the operating system. The rationale is to keep the compute nodes as
uninterrupted by the operating system as possible by outsourcing the usual operating
system tasks to dedicated additional hardware. The benefits of this are potentially
excellent scalability up to large task counts which should results in minimal variation of
application run time. The downside of this reduced kernel is that some services which a
small number of applications expect or rely on, e.g. access to the X11 libraries, are not
available on the compute nodes.

4 Compiling NEMO on HECToR

In this section we describe how to compile NEMO on the HECToR system. The system
has three different compiler suites available; Portland Group International (PGI), Path-
Scale and GNU. Generally, PGI and PathScale are found to give the best performance
for Fortran/Fortran 90 codes so we will only consider these two compiler suites. Further
information on the compilers available on HECToR can be found in the HECToR User
Guide [2].

The NEMO code utilises the netCDF (network Common Data Form) library for
inputting and outputting its data files which means before compilation can begin the
netCDF library must be available or compiled from source. Further information on
netCDF can be found at [3, 4].

NEMO can potentially be run on any number of processors providing sufficient mem-
ory is available to fit the required subset of data onto a single processor. The number of
processors must be specified at compile time as the dimensions of a number of statically
allocated arrays are computed based on the processor count. This hard-wiring of the
processor count into code means that the code must be recompiled if a different number
of processors is used.

The NEMO Makefile is somewhat complex. The internal macro names (those pre-
defined in make) such as FC, FFLAGS, LDFLAGS, etc are not used. Instead, the code
authors use their own naming convention and as no comments have been included to
describe these the user is left to make their own decision as to what each macro name
stands for. Table 1 lists the NEMO Makefile macro names and what they are believed
to correspond to using the standard Makefile macro naming conventions.

4.1 PGI

To compile the NEMO model using the PGI compiler the following flags are set in the
Makefile:

EXEC_BIN = /work/n01/n01/fionanem/NEMO/ORCA025/bin/orca025k64

# netcdf library and includes

NCDF_INC = /home/n01/n01/sga/PACKAGES/include

NCDF_LIB = -L/home/n01/n01/sga/PACKAGES/lib -lnetcdf

P_C = ftn -Mcpp=comment

P_O =
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NEMO Make-
file macro

Standard
make macro

Description

P C CPP Pre-processor with default flags

P P CPPFLAGS Pre-processor flags

P O - Pre-processor, specific optimisation flags

M K MAKE Name of make utility

F C FC Specifies Fortran compiler and flags

F L LD Fortran linker

F O FFLAGS Fortran optimisation flags

A C AR Archiver

L X LDFLAGS Fortran linker flags

Table 1: NEMO Makefile macros with corresponding standard Makefile macro name if
applicable and description

M_K = gmake

F_C = ftn -c

F_L = ftn

A_C = ar -r

F_O = -O3 -r8 -I $(MODDIR) -I$(MODDIR)/oce -I$(NCDF_INC)

L_X = -O3 -r8

The Fortran wrapper script ftn invokes the pgf90 compiler and includes the appro-
priate paths to the MPI library which means that this doesn’t need to be added in at link
time. NCDF INC and NCDF LIB specify the location of the netCDF library and associated
include files. The pre-processor option -Mcpp=comment ensures that C-style comments
are retained in the pre-processed output. The -O3 flag specifies the level of optimisa-
tion applied. The -r8 flag ensures that all variables specified as REAL are interpreted as
DOUBLE PRECISION.

For the problem we are concentrating on, processor counts of less than 96 currently
will not compile with the PGI compiler. The error message obtained is of the form:

/opt/pgi/7.0.4/linux86-64/7.0-4/lib/libpgf90.a(initpar.o)(.text+0x2):

In function ‘__hpf_myprocnum’:

: relocation truncated to fit: R_X86_64_PC32 __hpf_lcpu

The reason for this error is that when NEMO is compiled for smaller processor counts,
more than 2 GB of address space is required. This is a known feature of the PGI compiler
and will be fixed in future releases of PGI compiler and system libraries. At present,
the PathScale compiler is the only alternative if runs using smaller processor counts are
required.

4.2 PathScale

If address space in excess of 2 GB is required (i.e. using less than 96 processors) then
we have to use the PathScale compiler. As mentioned earlier, NEMO uses the netCDF
library. The version of netCDF in sga/ and the version in the package account (un-
der /usr/local/packages/netcdf) were both compiled using the PGI compiler. This
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means the object files are PGI specific and won’t work with the PathScale compiler.
Therefore, before compiling NEMO with PathScale we must also compile netCDF with
the PathScale compiler to ensure that compatible object files are created. The options
used to compile the netCDF library on HECToR were as follows:

module swap PrgEnv-pgi PrgEnv-pathscale

export CC=’cc -DpgiFortran’

export FC=’ftn -cpp -DpgiFortran -fno-second-underscore’

export F90=’ftn -DpgiFortran -cpp -fno-second-underscore’

export CXX=’CC -DpgiFortran’

./configure --prefix=/home/n01/n01/fionanem/netcdf/3.6.2 --disable-cxx

make

make check

make install

The module swap PrgEnv-pgi PrgEnv-pathscale command swaps from the de-
fault (PGI) programming environment to the the PathScale programming environment.
The -fno-second-underscore ensures only a single underscore is used when calling ex-
ternal library routines. The ./configure script must be run with the --disable-cxx

option. This option prevents the C++ API from being built. If this option is not included
then the link stage will fail when attempting to link the shared library libgcc s.

To compile the NEMO model using the PathScale compiler the following flags are
set in the Makefile:

EXEC_BIN = /work/n01/n01/fionanem/NEMO/ORCA025/bin/orca025k64_path

# netcdf library and includes

NCDF_INC = /home/n01/n01/fionanem/netcdf/3.6.2/include

NCDF_LIB = -L/home/n01/n01/fionanem/netcdf/3.6.2/lib -lnetcdf

P_C = ftn -Mcpp=comment

P_O =

M_K = gmake

F_C = ftn -c -P

F_L = ftn

A_C = ar -r

F_O = -O3 -r8 -I $(MODDIR) -I$(MODDIR)/oce -I$(NCDF_INC)

L_X = -O3 -r8

As before, NCDF INC and NCDF LIB specify the paths to the netCDF library compiled
using the PathScale compiler suite. The F C flag needs the -P flag to ensure that the
pre-processor removes lines containing # in the output. If these lines are not removed
then the Fortran compiler attempts to compile these and the compilation will fail.
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5 Running NEMO on HECToR: creating new experiment
data, verifying the output and visualising data

A typical NEMO run has a number of input and output files which vary depending on the
particular model being solved. The input and output files used for the test configuration
are summarised below:

• Input files

– namelist - contains parameters which control the run, e.g. number of timestep,
output frequency, which data to compute etc.

– Various netCDF files which contain information required by the code.

• Output files

– ocean.output General info on run

– solver.stat Output from solver for each time step

– time.step Timing info for each model time step

– ice evolu Information relating to sea-ice

– date.file Contains info which gives the date range over which the model
runs, e.g. O25-TST 1m 19580101 19580101 for this example.

– layout.dat Contains info relating to the layout used for this run.

– *.nc - netCDF format, one file per processor

The number of netCDF (*.nc) output files is determined by the particular output files
requested in the namelist and the number of processors on which NEMO is executed.
For the test configuration, 7 sets of *.nc files are output with names of the form:-

O25-TST_1m_19580101_19580101_grid_T_0100.nc

O25-TST_1m_19580101_19580101_grid_U_0100.nc

O25-TST_1m_19580101_19580101_grid_V_0100.nc

O25-TST_1m_19580101_19580101_grid_W_0100.nc

O25-TST_1m_19580101_19580101_icemod_0100.nc

O25-TST_00000060_restart_0100.nc

O25-TST_00000060_restart_ice_0100.nc

Thus, if NEMO is executed on 221 processors then, on completion, a total of, 221*7 =
1547, *.nc files are generated by the run. The *grid*.nc and *icemod*.nc files contain
model information for each time step. The *restart*.nc files are files which enable the
model to be restarted from a particular point in model time.

5.1 Creating a new set of NEMO experiment data

This section describes how to create a new set of NEMO input data. This is useful as it
allows multiple sets of identical input data to be generated in separate directories which
is useful when benchmarking the code. Andrew Coward supplied several scripts in the
ORCA/bin directory which set up new experiment directories. They are used as follows:-
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1. Edit setup ex1 to change the experiment number from 001 to the appropriate
value, e.g. 002, 003 etc.

2. Execute setup ex1. This script creates a new directory with the appropriate num-
ber (e.g. EXP002) and populates it with symbolic links to the invariant model
data. It also copies in the default versions of the namelist control files and several
management scripts.

3. Edit linkcore to change the experiment number (e.g. set nex = 002) as used in
step 1. Also ensure that the path to the experiment directory is correctly set.

4. Run linkcore. This script creates the symbolic links for to the DFS3 versions of
the CORE forcing fields.

With NEMO V3.0 the setup and linkcore scripts were modified so that they take
the name (number or characters) that will be pre-pended to the experiment directory
name. E.g. the following commands will create a new run directory called EXP V3.0 001:

./setup_experiment 001

./linkcore_experiment 001

5.2 Combining the output data

When NEMO executes, each processor writes out the particular part of the ocean on
which it operated to a separate netCDF (.nc) file. In order to perform any analysis
or verification of the output data these netCDF files must first be recombined into a
single netCDF file on which the viewers (e.g. nemoplotnc, ncview etc) and diagnostic
tools (e.g. CDFTOOLS) can operate. The nocscombine code can be used to perform
this recombination. To recombine a series of netCDF 3.6.2 files using nocscombine the
following command can be used:

nocscombine -f O25-TST_CU30_19580101_19580101_grid_T_0000.nc -d votemper

The -f specifies the file series which is to be recombined, the -d specifies the particular
field (e.g. temperature, salinity, velocity etc) that you wish to extract. If no -d is
specified then the entire netCDF file will be recombined. The default output file name
will be as given to the nocscombine tool with the processor number stripped away, e.g.
O25-TST CU30 19580101 19580101 grid T.nc for the example above. If required, the
output file can be altered with the -o flag. The options for nocscombine can be viewed
with the nocscombine -h command.

5.3 Using CDFTOOLS for verification of NEMO output

Once a single netCDF file has been created as described in Section 5.2 the data can be
compared against vanilla (i.e. before any changes have been made to the code) output
using the CDFTOOLS package. CDFTOOLS is package of Fortran 90 programs and li-
braries for performing diagnostic tests on NEMO output. Further details on CDFTOOLS
and the individual tools can be found at [5]. One field from each of the 5 output grids
(restart files are ignored) is compared against the vanilla output. The grids and fields
compared are given below:
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Grid Field Physical property

GRID T votemper = temperature (C)

GRID U vozocrtx = zonal current (m/s)

GRID V vomecrty = meridional current (m/s)

GRID W vovecrtz = vertical velocity (m/s)

GRID icemod isssalin = sea surface salinity (PSU)

Comparing a global single field from each of the main output datasets should be sufficient
verification that the modified code gives correct results. It would be excessive to compare
every single field, besides which the length of time required to run the verification would
become prohibitive.

It should be noted that the NEMO output files need to contain some actual data.
Running with the default namelist settings specifies that data will be output every 300
time steps which is fine for production runs. However, as our test run is only for 60 time
steps this means that no real data is actually written out and the CDFTOOLS codes
will crash. Sample error output for such a crash is below:

~/CDFTOOLS/bin/cdfmeanvar votemper_ncdf3.nc votemper T

npiglo= 1442

npjglo= 1021

npk = 64

nvpk = 64

Problem in getvar for votemper

ERROR in NETCDF routine, status= -40

NetCDF: Index exceeds dimension bound

FORTRAN STOP

Thus, to ensure that data is written out the output frequency must be changed from 300
to 30 time steps. This is achieved by changing the value of nwrite in the namelist file.

Then, the procedure for verifying that the NEMO output is sensible is as follows:-

1. For each dataset (i.e. vanilla and the one to be tested) combine the processor
specific output files into a single netCDF file using nocscombine as described in
Section 5.2.

2. Inside the particular experiment directory, create soft links to several map files
mask.nc, new maskglo.nc, mesh zgr.nc and mesh hgr.nc which are required
by the CDFTOOLS, e.g.

ln -s /work/n01/n01/acc/DATA/ORCA025/mask.nc mask.nc

ln -s /work/n01/n01/acc/DATA/ORCA025/new_maskglo.nc new_maskglo.nc

ln -s /work/n01/n01/acc/DATA/ORCA025/mesh_zgr.nc mesh_zgr.nc

ln -s /work/n01/n01/acc/DATA/ORCA025/mesh_hgr.nc mesh_hgr.nc

If you forget to create these soft links the following somewhat cryptic error is
obtained:-

fionanem@nid15875:

/work/n01/n01/fionanem/NEMO_V3.0/ORCA025/EXP_V3.0_005>

9



~/CDFTOOLS/bin/cdfmeanvar votemper_ncdf3.nc votemper T

npiglo= 1442

npjglo= 1021

npk = 64

nvpk = 64

ERROR in NETCDF routine, status= 2

No such file or directory

FORTRAN STOP

3. For each dataset compute the spatial 3D mean (i.e. over all depth levels) temper-
ature and variance using the cdfmeanvar tool as follows:-

cdfmeanvar vanilla_inputfile.nc votemper T > vanilla_output_votemper_T.txt

cdfmeanvar test_inputfile.nc votemper T > test_output_votemper_T.txt

4. Compare the two output files using diff, xxdiff or similar. Ideally they should
be identical or any differences should be explainable.

5. Repeat steps 1-4 for each grid and field to be tested.

As this verification will be necessary following any changes to the code it is sensible to
have some scripts to perform it. Such scripts can be found in Appendix A. Essentially the
verification scripts compare the NEMO output to vanilla output and note any differences.
The verification takes around 20-40 minutes depending on the number of parameters
being tested and thus must be run on the serial queue to avoid excessive use of the login
node resources.

5.4 Visualising the NEMO output

A visual check of the output data can tell us very quickly whether the code has run
successfully and can also be useful in trouble shooting any problem runs. E.g. if a
particular part of the model has failed (e.g. the waters around the antarctic region)
visualising the results can be much more informative than looking at the differences
between the vanilla and problem output files.

Output from NEMO can be viewed using the nemoplotnc tool. Prior to using this
tool some environment variables must be set to allow colour palette files and default
data paths to be set. COLOUR2 DIR contains the path to the colour palette files and
DATA DIRPATH contains the path to the netCDF file to be read in. These can be set in
bash shell as follows:

export COLOUR2_DIR = /home/n01/n01/acc/NEMOPLOT/colour2

export DATA_DIRPATH = /work/n01/n01/fionanem/NEMO/ORCA025/EXP001/

O25-TST_CU30_19580101_19580101_grid_T.nc

export VMASK1 = 1.e20

VMASK1 is used to set the mask value (the value assigned to the land cells) such that the
land cells get ignored when the data are plotted. Once these environment variables have
been set the nemoplotnc command can be executed as follows:

~/NEMOPLOTNC/nemoplotnc

10



nemoplotnc can be used to view both single processor and combined netCDF files.
Figure 2 shows a screen-snapshot from nemoplotnc for the temperature field generated
as described in Section 5.3.

Variable:votemper Data Type: Unknown Grid: Unknown

Query Mode:Single Timestep: -1 Days: -1.00

Bottom Left Coords  ( 0, 0)

Top Right Coords    (1441, 1020)

0.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00

/votemper_ncdf3.nc Slab:    1

Figure 2: Votemper from NEMO after 30 time steps

6 NEMO performance

To investigate the performance of the NEMO code we run the code using different num-
bers of processors and different grid configurations. We also investigate whether the
particular compiler used makes any difference. The performance of NEMO is measured
by examining the time.step file output by the code. This reports the model step num-
ber and time taken in seconds. The benchmark dataset runs for a total 60 model time
steps and so our benchmark data reports the time taken for 60 time steps. All the the
results presented in this section correspond to version 2.3 of NEMO. Results from version
3.0 of NEMO are presented separately.

The number of processors on which NEMO will be run is set in the source file named,
par oce.F90. This file also sets up the grid dimensions over which the model will be
decomposed. The variables jpni, jpnj, and jpnij specify respectively the number of
processors in the i direction, the number of processors in the j direction and the total
number of processors. E.g. a 16x16 processor grid which runs on 256 processors would
have jpni = 16, jpnj = 16 and jpnij = 256.

6.1 Scaling for equal grid dimensions

We begin by investigating the scaling of the code for grids of equal dimension, i.e where
jpni = jpnj. This restricts us to a relatively small number of processors counts ranging
from 64 (8x8) to 1024 (32x32). The PathScale compiler is used for processor counts less
than 96. The results are shown in figure 3.
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Figure 3: Performance of NEMO when jpni = jpnj for the PGI and PathScale compiler
suites.

From figure 3 it is clear that the PGI compiler performs slightly better (a few percent)
than the PathScale compiler.

6.2 Single core versus dual core performance

Comparison of single node versus virtual node mode shows that the runtime is generally
faster when running in single node mode. The likely reason for this is that single node
mode will create less contention for both memory and I/O nodes than running in virtual
node mode. Table 2 shows the runtimes for 256 and 221 processors using a 16 by 16
grid for both single and virtual node modes. It should be noted that the 221 processor
run has had the land only cells removed. The effect of removing land only cells will be
examined in section 6.5.

From table 2 we can see that single node mode is up to 18.59% faster than virtual
node mode. As the charging structure on HECToR is per core, single node mode will
cost significantly more (almost double) AU’s than virtual node mode. Thus, running
NEMO in single node mode should only be considered if it’s critical to obtain a fast
solution.
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jpnij jpni jpnj Time for 60 steps (seconds)
mppnppn=1 mppnppn=2

256 16 16 119.353 146.607

221 16 16 112.542 136.180

Table 2: Runtime comparison for 60 time steps for single node (mppnppn=1) and virtual
node (mppnppn=2). Runs were performed using the PGI compiler

6.3 Performance for different grid dimensions

Using a fixed number of processors we investigate how the shape of the grid affects the
performance. We concentrate on 128 and 256 processors with two results from a 512
processor run. All runs are carried out using the PGI compiler suite. The results of this
experiment are shown in figure 4.

Figure 4 suggests that for a fixed number of processors the ideal grid dimensions are
square i.e. where jpni=jpnj. If the number of processors is such that it is not possible
to have jpni=jpnj (i.e. the number of processors is not a square of an integer) then the
results suggest that the values of jpni and jpnj should be as closer to each other as
possible with the value of jpni chosen such that jpni < jpnj.

6.4 Scaling plot

We also look at the scaling of NEMO from 128 to 1024 processors. Where possible equal
dimension grids have been used. In situations where this was not possible, e.g. 128 and
512 processors the grid size has been chosen as close to square as possible and such that
jpni < jpnj as this has shown to yield the best performance.

Figure 5 shows the scaling of NEMO for both the PGI and PathScale compilers.
From figure 5 it’s clear that NEMO continues to scale out to 1024 processors but

the benefit in using more processors is purely a reduction in runtime and not efficient
in terms of AU’s used. 128 or 256 processors seem to give the best compromise between
AU use and runtime. As seen previously, the PGI compiler performs slightly better than
the PathScale compiler for all processor counts tested.

6.5 Removing the land only grid cells

So far we have considered decompositions in which all the grid cells are used, i.e. those
where the code has jpnij = jpni x jpnj. However, many decompositions give rise to
grid cells which contain only land. These land only cells are essentially redundant in an
ocean model and can be removed. In the code this means that the value of jpnij can
be reduced such that jpnij <= jpni x jpnj. It is anticipated that removing land only
cells may improve the performance of the code as branches into land only regions will
no longer take place and any I/O associated with the land cells will also be removed.
Furthermore, the number of AU’s required will be reduced as fewer processors will be
required if the land cells are removed.

The NEMO code does not automatically remove the land cells which means the user
needs to use the chosen decomposition and then separately determine how many cells
contain only land. A tool written by Andrew Coward can be used to determine the
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number of active (ocean containing) and dead (land only) cells. The procedure for doing
this is as follows:

• Use the nocsprocmap code to generate the layout.dat file for the required decom-
position. E.g running the command
∼acc/NTOOLS/NOCSPROCMAP/nocspmap r25 -f bathy meter.nc -i 16 -j 16 -s

gives the number of active (i.e. ocean only) regions for a jpni = 16 by jpnj = 16

processor grid.

• Alter the appropriate line of par oce.F90 so that the value of jpnij is reduced
such that the the land only squares are removed. For a 16 by 16 grid, there are 35
land only squares and thus jpnij = 221 instead of 256.

Table 3 gives the number of land only cells for a variety of grid dimension configura-
tions. The reduction in the number of processors required is generally around 10%. For
very large (>256) processor counts the reduction can be considerably larger and as much
as 25%.

jpni jpnj Total cells Land only cells Percentage saved

6 6 36 0 0.00%

7 7 49 1 2.04%

8 8 64 2 3.13%

9 9 81 6 7.41%

10 10 100 10 10.00%

11 11 121 13 10.74%

12 12 144 14 9.72%

13 13 169 21 12.43%

14 14 196 22 11.22%

15 15 225 29 12.89%

16 16 256 35 13.67%

20 20 400 65 16.25%

30 30 900 193 21.44%

32 32 1024 230 22.46%

40 40 1600 398 24.88%

16 8 128 117 8.59%

32 16 512 92 17.97%

Table 3: Number of land only squares for a variety of processor grids. The percent-
age saved gives the percentage of cells saved by removing the land only cells and will
correspond to the reduction in the number of AU’s required for the computation.

We now investigate whether removing the land only cells has any impact on the
runtime of the NEMO code. We hope that by avoiding branches into land only regions
and the associated I/O involved with the land cells that the runtime should reduce. For
this test we have considered only 128, 256, 512 and 1024 processor grids. The results are
given by table 4.
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jpni jpnj jpnij Time for 60 steps (seconds)

32 32 1024 110.795

32 32 794 100.011

16 32 512 117.642

16 32 420 111.282

16 16 256 146.607

16 16 221 136.180

8 16 128 236.182

8 16 117 240.951

Table 4: Runtime comparison for 60 time steps for models with/without land squares
included on 128, 256, 512 and 1024 processor grids.

From table 4 we can see that for 256 processors and above removing the number
of land squares reduces the total runtime by up to 10 seconds which corresponds to a
reduction of around 7-10%. For a 128 processors run, removal of the land-only cells
actually gives a small increase in the total runtime. This difference is within normal
repeatability errors and could be a result of heavy load on the system when the test
was run. As the runtime does not seem to improve greatly with the removal of the land
only cells the main motivation for removing these cells is to reduce the number of AU’s
used for each calculation. Assuming the runtime is not affected detrimentally then the
reduction in in AU usage will be as given by table 3.

The times given in table 4 are the time that the NEMO code reports when it writes the
information from time step 60 to disk. This, however is not the whole story. At the end
of the run, NEMO also dumps out the restart files required to restart the computation
from the final time step. These restart files are significantly larger than the files output
at each individual time step and thus take a reasonable amount of time to write out
to disk. Unfortunately the code does not output any timings which include the writing
of these restart files. One way to get an estimate of the time taken to write out these
restart files is to look as the actual time taken by the parallel run as reported by the
batch system. The PBS output files gives the walltime in hh:mm:ss. By subtracting
the time taken for 60 steps from walltime we can get an estimate of the time taken over
and above the step by step output, i.e. we can get an estimate of the time taken to
read in the input data and output the final restart files. To get accurate time estimates
timers should be inserted into the code but as a first pass this method will let us find out
whether there is any variation with processor count. The amount of time that NEMO
spends in I/O and initialisation will be discussed in Section 6.9.

6.6 Compiler optimisations

In this section we investigate whether any compiler optimisations can be used to improve
the performance of NEMO. We investigate a number of different compiler flags for both
the PGI and PathScale compilers and investigate the performance for a 16 by 16 grid
running on 221 processors. Tables 5 and 6 shows the results obtained for the PGI and
PathScale compilers respectively.

Tables 5 and 6 show that the best performance is obtained using -O3 -r8. More
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Compiler flags Time for 60 steps (seconds)

-O0 -r8 173.105

-O1 -r8 169.694

-O2 -r8 151.047

-O3 -r8 141.529

-O4 -r8 144.604

-fast -r8 fails on step 6

-fastsse -r8 fails on step 6

-O3 -r8 -Mcache align 155.933

Table 5: Runtime for 60 time steps for different compiler flags for the PGI compiler
suite. All tests run with jpni=16, jpnj=16 and jpnij=221.

Compiler flags Time for 60 steps (seconds)

-O0 -r8 325.994

-O1 -r8 203.611

-O2 -r8 154.394

-O3 -r8 152.971

-O3 -r8 -OPT:Ofast 162.148

Table 6: Runtime for 60 time steps for different compiler flags using the PathScale
compiler suite. All tests were run with jpni=16, jpnj=16 and jpnij=221.

aggressive optimisations either cause the code to slow down or to break entirely, e.g.
fast or fastsse both cause the code to crash.

6.7 Summary of benchmarking study

What have we found out from running these simple benchmarks?

• PGI performs consistently better than PathScale with the latest versions of the
compilers (PathScale 3.1, PGI 7.2.5) giving almost identical performance.

• Running in single core mode will give a reduction in the 60 step runtime but this
is more than offset by the increased number of AU’s required.

• Equal grid dimensions are best and should be used where possible. If equal di-
mensions can’t be used then they should be chosen to be as square as possible and
such that jpni < jpnj.

• NEMO continues to scale out to 1024 processors but the best performance in terms
of runtime versus AU’s used is obtained for 128 or 256 processors.

• Removal of land squares reduces the runtime for 60 time steps for most processor
counts and greatly reduces the number of AU’s required. This is not carried out
by default in NEMO and thus many researchers could be using more AU’s than
necessary.
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• Compiler flags above -O3 don’t provide any benefit and in some cases break the
code entirely - see section 9 for more details.

6.8 Optimal processor count

The results presented in Section 6 suggest that all future work on NEMO should be
carried out using code compiled with the PGI compiler suite as it gives the lowest
runtimes.

The NOCS researchers ideally want to be able to run an entire model year, i.e. 365
model days, in a 12 hour run on HECToR as this enables them to make optimal use of
the machine/queues and also allows them to keep up with the post-processing and data
transfer of the results as the run progresses. They can currently achieve 300 model days
in a 12 hour run using 221 processors. In this section we investigate whether an optimal
processor count which satisfies the desire to complete a model year in a 12 hour time slot
can be found. To do this NEMO is executed over a range of processors and the number
of model days which can be computed in 12 hours, ndays, is obtained from:-

ndays = 43200/t60 (1)

where 43200 is the number of seconds in 12 hours and t60 is the time taken to complete
a 60 step (i.e. 1 day) run of NEMO. This means we ideally need t60 <= 43200

365
= 118.36

seconds. The processor count investigated varies from 159 to 430. In all tests runs have
been performed with the land cells removed. The results of this test are summarised in
table 7. Figure 6 shows the results in graphical form with the 365 day threshold marked
by the dashed line.

In performing this investigation some problems were discovered relating to the com-
putation of land only cells performed by the nocspmap r25 code. It was found that
several processor configurations yielded incorrect numbers of land cells. These have
been highlighted in table 7 where the value which was incorrectly computed is given in
“()” after the correct number of land cells. If the wrong number of land cells are specified
the code fails with an error of the form:-

===>>> : E R R O R

===========

Eliminate land processors algorithm

jpni = 21 jpnj = 22

jpnij = 380 < jpni x jpnj

***********, mpp_init2 finds jpnij= 379

6.9 Time spent in file I/O and initialisation

The previous sections have reported performance based on the time taken to complete
60 time steps of the ocean modelling computation. This does not include initialisation
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jpni jpnj No. of procs Time for 60 steps (seconds)

13 14 159 177.583

14 14 174 163.633

14 15 187 172.191

15 15 196 157.858

15 16 209 153.450

16 16 221 145.078

16 17 232 137.507

17 17 244 127.705

17 18 260 135.688

18 18 274 127.103

18 19 286 122.639

19 19 304 125.880

19 20 321 118.081

20 20 335 117.830

20 21 349 107.464

21 21 364 113.491

21 22 379(380) 114.175

22 22 398(396) 107.051

22 23 413 123.939

23 23 430(429) 110.871

Table 7: Runtime for 60 time steps for various processor configurations ranging from 159
to 430.
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time or file I/O time which can be a significant fraction of the total runtime. Figure 7
shows the breakdown of the total runtime for various processor counts.
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Figure 7: Performance of NEMO showing the breakdown of the total runtime for various
processor counts. All tests carried out using PGI compiler.

Up to 250 processors the difference between the total runtime and time for 60 time
steps remains approximately constant. Beyond 250 the results are somewhat more erratic
with large variations, of up to 200%, occurring between 350-400 processors. As the
number of files opened for output increases linearly with the number of processors these
variations are perhaps to be expected. The time spent in initialisation and I/O reported
by Figure 7 was found to be highly variable with multiple runs producing up to 50%
variation. Conversely, the time for 60 model time steps was observed to be relatively
stable with variations lying within the expected range for repeated runs (5-10%). The
large variation in the initialisation and I/O time occurs because the I/O subsystem on
HECToR is a resource shared between other users. Thus, the speed of I/O is governed
by the load the system is under at the time when the job runs. If the I/O system is
heavily loaded when NEMO attempts to read/write from/to file then the time spent
in I/O operations will be increased. This makes predicting the runtime of a NEMO
job problematic as the total runtime will be governed by system load whilst the job is
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running.

7 Aside on I/O strategies for parallel codes

Parallel codes typically use one of the following I/O strategies:

• Master-slave - where a single (master) processor performs all the reading/writing
and broadcasts/gathers data to/from the slave processors. The slave processors
are usually idle whilst the reading/writing is taking place. If the time spent in
computation is much greater than the time spent in I/O this approach may be
acceptable. However, for codes involving significant amounts of I/O this approach
could be highly detrimental to the performance. Due to it’s ease of implementation,
however, this is still the most common form of I/O used in parallel codes. Often
codes were designed to run on a relatively small number of processors where such
an approach was suitable. However, in recent years, as the number of processors
has increased the master-slave I/O approach is becoming less than ideal.

• Multiple masters and groups of slaves or I/O subgroups - similar to the master-
slave approach but here we have multiple master processors each gathering data
from their own group of slave processors. This approach can reduce the overheads
involved in having a single master process carrying out the I/O. It also reduces the
memory requirements as the data to be input/output is now distributed between
several master processors rather than a single processor. Some synchronisation of
the I/O may be required to ensure the data are read/written in the correct order.
However, it is anticipated that any synchronisation will be more than offset by the
savings made from using multiple master processors.

• Parallel I/O - where each processor writes its own data to a separate file. The files
then need to be collected together in the correct order at some later stage either
via standard Unix commands (e.g. cat) or with a separate code. This approach
should be more efficient than the master-slave approach as all the processors are
kept busy with none idling. However, there may be limitations on the scalability
of this approach. Most operating systems limit the number of files which can be
open (for read/write) at the same time. This limit could be as few as 1000 files for
some Unix implementations. Some applications may write to several different files
and so this places a severe restriction on the number of processors which be used.
E.g. if the file limit is 1000 and each processor writes to 10 files then we are limited
to running on 100 processors or less. Clearly, this is not ideal. Many applications
require many hundreds or thousands of processors and thus a different approach is
required.

• MPI-IO Extensions to MPI and part of the MPI-2 standard [6]. Essentially it
is a library providing functions which can be used to perform parallel I/O using
the MPI libraries. A single file is written to by all processors which avoids the
limitations of parallel I/O. Each processor writes directly to its own region of the
file which avoids the need for any post-processing. As with parallel I/O all the
processors are involved in the read/write operation so no-one remains idle. Not
fully implemented by all vendors.
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A vast number of I/O benchmarks exist and can be used to obtain performance
estimates for the different I/O methods.

7.1 NEMO file I/O

In its current configuration NEMO uses a parallel I/O type approach to read in much
of its input data or restart data. Some small configuration files are read in using a
master-slave method, e.g. the namelist file.

The output is performed by each processor where each processor dumps out it’s
own section of the ocean model, i.e. the output is performed using parallel I/O. The
input/output binary data are typically in netCDF (*.nc) format which means that
any changes to the I/O strategy must take this into account. NEMO currently uses
netCDF version 3.6.2 but it is intended that future versions will use netCDF 4.0 which
is anticipated to give improved performance.

The use of netCDF gives portable output files that can be used on different architec-
tures. The size of the NEMO output and the post-processing means that converting to
an MPI-IO strategy is simply not feasible and thus we need to do the best we can with
the existing parallel I/O implementation.

8 NetCDF performance and installation

NEMO uses netCDF files for both its input and output data. NetCDF stands for network
Common Data Form and is a set of interfaces, data formats and software libraries which
help read and write scientific data files. Further information on netCDF can be found
in [3, 4]. The netCDF libraries allow scientific data to be represented in a machine
independent and thus portable format.

NEMO currently uses version 3.6.2 of netCDF. The new release of netCDF (netCDF
4.0) allows HDF5 files to be accessed and also includes parallel I/O capabilities. The
first stable release version of netCDF 4.0 became available on 29/06/2008 and as of
23/03/2009 the latest version is 4.0.1-beta3. Below we describe the installation of the
stable release which contains all the necessary functionality required for NEMO. Some
additional installation and porting details can be found at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/

Prior to installing netCDF 4.0 both zlib version 1.2.3 or higher and HDF5 version
1.8.1 must be installed as these are prerequisites of netCDF 4.0. The installation of zlib,
HDF5 and netCDF 4.0 will be described in sections 8.2, 8.3 and 8.4 respecitvely. The
next section gives some performance details relating to netCDF 3.6.2.

8.1 NetCDF 3.6.2 performance on HECToR

The serial performance of netCDF version 3.6.2 is investigated by means of a simple
benchmark which reads and writes a netCDF file of varying size (Mbytes). Versions of
netCDF compiled with the PGI and PathScale compilers are tested to determine whether
the choice of compiler has any influence on the performance. The library is also compiled
with various optimisation levels to determine where compiler optimisations can improve
the performance.
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One of the netCDF tester codes (in nc test/large files.c) writes and reads a
large netCDF file. The size of the file can be altered by varying the value of I LEN.
Timers (MPI Wtime) have been inserted into this code to enable the write/read times to
be computed. Table 8 gives the write/read time in seconds for various compilers and
compiler flags for a file of size 4 Gbytes. The timings are taken from the best (fastest)
of three runs.

Compiler Compiler flags Write time Read time

PGI ftn i.e. -O1 32.951 28.549

Pathscale ftn i.e. -O2 17.652 14.269

PGI ftn -O3 12.823 12.351

Table 8: Comparison of write/read performance of netCDF for various compilers and
compiler flags.

Table 8 shows that the performance of netCDF 3.6.2 compiled with the default com-
piler options is significantly poorer than that compiled with -O3. The PathScale compiler
gives the best performance for this example.

The variation in performance for varying file sizes has also been investigated for both
the PGI and PathScale compiler suites. Figure 8 gives the results of this experiment.
From figure 8 it is clear the write/read time varies approximately linearly with file size
and that netCDF 3.6.2 compiled with the PathScale compiler is consistently faster than
that compiled with the PGI compiler.

The results given table 8 suggest that using an optimised version of netCDF 3.6.2
may be beneficial to NEMO. To test this, NEMO was recompiled using a version of
netCDF 3.6.2 compiled with -O3. Note, to ensure object file compatibility, NEMO
must be compiled with the same compiler suite that is used to compile netCDF. The
runtime was found to be almost identical to that obtained with the unoptimised version
of netCDF 3.6.2 which is unsurprising. The test codes are serial, whereas NEMO is a
parallel code. Furthermore, NEMO writes out many files simultaneously rather than
one single large file and also does computation whereas the test code is purely carrying
out I/O operations. Even although the netCDF optimisation level appears to have little
effect on the peformance of NEMO we will still compile netCDF 4.0 using -O2 as it may
be beneficial to other users of the library.

8.2 Installing zlib 1.2.3

Zlib is freely available compression library which can be utilised by HDF5 1.8.1 or later.
Further information on zlib can be found at [7]. The following options were used to
compile zlib 1.2.3 on HECToR. The optimisation level was set to -O2 as this should give
a good compromise between performance and code stability.

make distclean

export FC=’ftn -O2’

export F90=’ftn -O2’

export F95=’ftn -O2’

export CC=’cc -O2’
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export CXX=’CC -O2’

export LOGFILE=build_zlib_pgi_opt.txt

./configure --prefix=/home/n01/n01/fionanem/local/optimised &> $LOGFILE

make >> $LOGFILE

make check >> $LOGFILE

make install >> $LOGFILE

cp -rp ~/local/optimised /work/n01/n01/fionanem/local/.

At the end of the installation the library files are copied to the the /work file system
as part of the HDF5 and netCDF installations must be carried out via the batch system
which can only access the work file system. The output from the make check is also
examined to ensure that all the testers complete successfully.

8.3 Installing HDF5 1.8.1

HDF5 is a set of tools and libraries that allows extremely large and complicated data
collections to be managed. The file format used by HDF5 is designed to be portable.
Further information on HDF5 can be found at [8].

HDF5 can be installed both with and without parallel I/O (i.e. MPI-IO) capabilities.
The following options were used to compile a serial (i.e. without parallel I/O) version of
HDF5 1.8.1 on HECToR.

export FC=’ftn -O2’

export F90=’ftn -O2’

export F95=’ftn -O2’

export CC=’cc -O2’

export CXX=’CC -O2’

export RUNSERIAL="aprun -q"

export LOGFILE=build_hdf5-1.8.1_noparallel.txt

./configure --prefix=/work/n01/n01/fionanem/local/noparallel \

--disable-shared --enable-static-exec --enable-fortran \

--disable-stream-vfd --disable-parallel \

--with-zlib=/work/n01/n01/fionanem/local

--with-szlib=/work/n01/n01/fionanem/local &> $LOGFILE

Some of the executables need to be executed on the backend (due to issues with the
getpwuid function causing a segmentation violation when executed on the login nodes).
Therefore, the make, make check and make install commands are all run via the batch
system running on a single processor. The RUNSERIAL environment variable is used to
tell the build that aprun must be used to launch executables. Initial attempts to build
the library failed with a number of errors relating to libtool. The error message is of the
form:

../libtool: line 1531: 0: Bad file descriptor

libtool: link: ‘H5.lo’ is not a valid libtool object

make[2]: *** [libhdf5.la] Error 1
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make[1]: *** [all] Error 2

make: *** [all-recursive] Error 1

The addition of #!/bin/bash to the batch script seems to resolve this problem. The
following commands are executed via a batchscript:

# Ensure we don’t run out of space for compile

export TMPDIR=/work/n01/n01/fionanem/tmp

export LOGFILE=build_hdf5-1.8.1_noparallel.txt

export CHECKFILE=check_hdf5-1.8.1_noparallel.txt

make >> $LOGFILE

make check > $CHECKFILE

make install >> $LOGFILE

The TMPDIR variable is set to ensure that we don’t run out of tmp space during the
build. After the build is complete the output from make check is examined to ensure
that all the testers pass. One of the testers fails - this is a known issue on the Cray X1
and assumed to also be an issue on the Cray XT4. The error message reported by the
make check is as follows:

Testing h5dump --xml -X : tempty.h5 *FAILED*

The failed tester is invoked by the testh5dumpxml.sh script in tools/h5dump. This
error is reported in the release notes supplied with the snapshot release and version
1.8.1, see [9] for further details. Essentially the error occurs because a single colon is
misinterpreted by the operating system. If the command is run via the command line,
e.g. ./h5dump --xml -X : tempty.h then the tester runs successfully.

To compile a parallel version of HFD5 1.8.1 the following options were used.

make distclean

export FC=’ftn -O2’

export F90=’ftn -O2’

export CC=’cc -O2’

export CXX=’CC -O2’

export RUNSERIAL="aprun -q"

export RUNPARALLEL="aprun -n 4"

export LOGFILE=build_hdf5-1.8.1_parallel.txt

./configure --prefix=/work/n01/n01/fionanem/local/parallel \

--disable-shared --enable-static-exec --enable-fortran \

--disable-stream-vfd --enable-parallel \

--with-zlib=/work/n01/n01/fionanem/local \

--with-szlib=/work/n01/n01/fionanem/local &> $LOGFILE

As with the serial build the make, make check and make install are performed on
the backend. The RUNPARALLEL environment variable ensures that the parallel runs are
performed on 4 processors. The following commands are executed via a batchscript:
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# Ensure we don’t run out of space for compile

export TMPDIR=/work/n01/n01/fionanem/tmp

export LOGFILE=build_hdf5-1.8.1_parallel.txt

export CHECKFILE=check_hdf5-1.8.1_parallel.txt

make >> $LOGFILE

make check > $CHECKFILE

make install >> $LOGFILE

All the test codes pass with the exception of --xml -X : tempty.h5 as described
above.

8.4 Installing netCDF 4.0

Once zlib 1.2.3 and HDF5 1.8.1 have been successfully installed the installation of
netCDF 4.0 can begin. As with HDF5 1.8.1, both serial and parallel versions of netCDF
4.0 are required. The serial version of the library is built using the serial version of HDF5
and the parallel version built using the parallel version of HDF5.

The serial build of netCDF 4.0 is relatively straightforward. The following commands
allow a serial version of netCDF 4.0 to be compiled:

make distclean

export FC=’ftn -O2’

export F90=’ftn -O2’

export F95=’ftn -O2’

export CC=’cc -O2’

export CXX=’CC -O2’

export NM=nm

export CPPFLAGS=-DpgiFortran

export LOGFILE=build_netcdf4.0_noparallel.txt

export CHECKFILE=check_netcdf4.0_noparallel.txt

./configure --enable-netcdf-4 \

--with-hdf5=/work/n01/n01/fionanem/local/noparallel \

--with-zlib=/work/n01/n01/fionanem/local \

--with-szlib=/work/n01/n01/fionanem/local --disable-cxx \

--disable-parallel-tests \

--prefix=/work/n01/n01/fionanem/local/noparallel &> $LOGFILE

The CPPFLAGS variable is a macro which is required by the PGI compiler suite
- otherwise the build fails. The --disable-cxx prevents the C++ API from being
built. The build fails when attempting to link the shared libgcc s otherwise. The
--disable-parallel-tests ensures that the parallel components of the library and
testers do not get built.

The make, make check and make install can all be executed on the login nodes as
no parallel elements are involved. The tester codes all pass without error.

Building the parallel version of netCDF 4.0 proved to be more problematic due to
various cross-compilation issues. At several stages of the build process, executables are
generated and then run. Unlike HDF5, netCDF 4.0 does not contain any environment
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settings for cross-compilation (e.g. the RUNSERIAL and RUNPARALLEL mentioned above).
Any parallel executables are either invoked via mpiexec which is not valid for HECToR
or on the command line via ./exename. This means that any steps of the build pro-
cess which run parallel executables must be extracted and run separately via the batch
system.

The first such problem arises during the make, where ncgen is executed in order to
generate the ctest.c and ctest64.c files. As ncgen is a parallel executable it cannot
run on the login nodes. The error message reported is:

[unset]: _pmi_init: _pmi_preinit encountered an internal error

Assertion failed in file /tmp/ulib/mpt/nightly/3.0/042108/xt/trunk/mpich2/..

.. src/mpid/cray/src/adi/mpid_init.c at line 119: 0

aborting job:

The solution is to execute the two runs of ncgen on the backend via a batchscript
and then to continue the make on the login node once the batch job has completed.

A similar problem occurs during the make check where 18 testers fail for the same
reasons. The error messages are of the form:

[0] assertion: st == sizeof ident at file mptalps.c line 93, pid 25085

FAIL: tst_dims

[0] assertion: st == sizeof ident at file mptalps.c line 93, pid 25090

FAIL: tst_files

...

Testing parallel I/O with HDF5...

SUCCESS!!!

PASS: run_par_tests.sh

=========================================

18 of 36 tests failed

Please report to support@unidata.ucar.edu

=========================================

Again, the error occurs because the tester codes are parallel (i.e. contain MPI calls)
and cannot run on the login nodes of HECToR. As before, the solution is to run these
eighteen testers on the backend via a batchscript.

The flags used to compile the parallel version of netCDF are summarised below:

make distclean # Ensure we start with a clean install

export FC=’ftn -O2’

export F90=’ftn -O2’

export F95=’ftn -O2’

export CC=’cc -O2’

export CXX=’CC -O2’

export NM=nm

export CPPFLAGS=-DpgiFortran

export LOGFILE=build_netcdf4.0_parallel.txt

export CHECKFILE=check_netcdf4.0_parallel.txt
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./configure --enable-netcdf-4 \

--with-hdf5=/work/n01/n01/fionanem/local/parallel \

--with-zlib=/work/n01/n01/fionanem/local \

--with-szlib=/work/n01/n01/fionanem/local --disable-cxx \

--enable-parallel-tests \

--prefix=/work/n01/n01/fionanem/local/parallel &> $LOGFILE

The CPPFLAGS and --disable-cxx are as described for the serial installation. The
--enable-netcdf-4 ensures that the netCDF 4.0 features are enabled. The
--enable-parallel-tests ensures that the parallel tests are executed.

After configuration completes the procedure for compiling and testing the parallel
version of netCDF 4.0 is as follows:

• Run make on the login node - it fails when attempts to execute ncgen

• Submit a batchscript which runs the two instances on ncgen, e.g.

aprun -n $NPROC ../ncgen/ncgen -c -o ctest0.nc ./../ncgen/c0.cdl > ./ctest.c

aprun -n $NPROC ../ncgen/ncgen -v2 -c -o ctest0_64.nc ./../ncgen/c0.cdl > ./ctest64.c

• Once batchscript completes, re-start the make which should now complete success-
fully

• Run make check on the login node - 18 testers will fail

• Submit a batchscript which runs the 18 parallel testers and wait for this to com-
plete.

• Once the testers have executed successfully run the make install on the login
node.

The serial and parallel tester codes are all found to run successfully confirming that
our installation of both the serial and parallel versions of netCDF 4.0 has been successful.

8.5 NOCSCOMBINE performance on HECToR for different versions
of netCDF

In this section we compare the performance of the nocscombine tool when compiled with
different versions of netCDF. Various versions of netCDF 4.0 were compiled throughout
the project (e.g. beta releases prior to the final stable release version) and results are
included for a variety of these along with the final release version results. The results
are summarised in table 9. For each test the following command was executed:

nocscombine -f O25-TST_CU30_19580101_19580101_grid_T_0000.nc -d \

votemper -o outputfile.nc

Each run was carried out in batch with the timings reported in table 9 being the best
of three runs. The runs were performed consecutively ensuring that the same processing
core was used for each. Despite this, considerable variation in runtimes was observed,
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NetCDF version nocscombine time (seconds) File size (Mbytes)

3.6.2 343.563 731

4.0-unopt 86.078 221

4.0-opt 85.188 221

4.0-opt* 76.422 221

4.0-beta2 84.758 221

4.0-beta2* 77.055 221

4.0-release 85.188 221

4.0-release* 78.188 221

4.0-Cray 92.203 221

4.0-release-classic 323.539 731

Table 9: Comparison of nocscombine performance for various versions of netCDF. The
* indicates that the system version of zlib was used.

as much as 100% in some cases. As I/O is a shared resource on the system we have no
control over other user activities so these variations are perhaps not surprising.

In table 9, 3.6.2 denotes the release version of netCDF 3.6.2 and uses the version
available via the package account on HECToR, e.g. the version accessed via the module

load netcdf command. Version 4.0-unopt denotes the Snapshot release dated 29th
April compiled with default optimisation (i.e. -O1). 4.0-opt is the same Snapshot release
compiled with optimisation set to -O2. 4.0-beta2 denotes the final beta2 version compiled
with -O2. 4.0-release denotes the final release version compiled with -O2. 4.0-Cray
denotes the version supplied by Cray which became available on HECToR during March
2009. Version 4.0-release-classic is netCDF 4.0 run in classic (i.e. netCDF 3.6.2 style)
mode. The * denotes versions which have been compiled using the system version of zlib
(version 1.2.1) rather than version 1.2.3.

Examining the results in table 9 we see that netCDF 4.0 clearly outperforms netCDF
3.6.2 both in terms of runtime performance and in terms of the amount of disk space
required. The size of the file output by netCDF 4.0 is 731/221 = 3.31 times smaller than
that output by netCDF 3.6.2. The runtime difference between the versions (c.f. version
3.6.2 with 4.0-release) is 343.563/85.188 = 4.03. This tells us that the runtime savings
do not just result from the reduced file size. It’s possible that there are some algorithmic
differences between the versions or perhaps the dataset now fits into cache better thus
reducing memory latency. The compression and chunking used by netCDF 4.0 may also
be improving the performance. Interestingly, the Cray version of netCDF 4.0 is slower
(92.203 seconds version 85.188 or 78.188 for the different zlib versions) than any of the
versions compiled as part of the dCSE project. Whilst the difference is 17.92% or 8.23%
depending on which version of zlib was used this is still significant enough to warrant
compiling a local version if your code spends sufficient time in netCDF routines.

The level of optimisation used to compile the netCDF library appears to have minimal
effect. The system version of zlib (version 1.2.1), outperforms version 1.2.3. However, as
netCDF 4.0 clearly states that version 1.2.3 or later is required it is potentially risky to
use the older version as functionality required by netCDF 4.0 maybe missing.
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In order to compare directly the performance of netCDF 3.6.2. and 4.0 we also tested
netCDF 4.0 in classic mode. To output classic format using netCDF 4.0 the following
changes must be made to the make global file4.F90 code:

• Change nf90 create call from: status = nf90 create( trim(ofile), NF90 HDF5,

ncid ) to status = nf90 create( trim(ofile),NF90 CLOBBER,ncid). Here the
NF90 CLOBBER ensures that netCDF classic format is used.

• Change the nf90 set fill call from: status = nf90 set fill(ncid, NF90 FILL,

oldfill) to status = nf90 set fill(ncid, NF90 NOFILL, oldfill).

• Comment out the nf90 put att command which sets the fill value for the netCDF
4.0 file. Strictly, as no filling occurs it’s not actually necessary to do this but avoids
uneccessary computations.

Comparing the results we see that netCDF 4.0-release in classic mode is approxi-
mately 5.8% faster than netCDF 3.6.2. Therefore it’s possible that some improvements
to the algorithms have been made between versions.

In summary, based on the results obtained from the NOCSCOMBINE code using
netCDF 4.0 instead of netCDF 3.6.2 will likely give significant performance improvements
for NEMO. The amount of disk space used could be reduced by a factor of 3 and the
time taken to write this information to disk could be reduced by a factor of 4. The time
taken to compress and uncompress the data at the post-processing stages still needs to be
quantified but the early results are promising. Section 9.4 discusses the implementation
of netCDF 4.0 in NEMO.

9 NEMO V3.0

Version 3.0 of the NEMO code became available in the autumn of 2008 and after addition
of the NOCS specific features this version was used for the remainder of the project.
Many of the same tests carried out in section 6 were repeated with NEMO V3.0.

9.1 Compilation

Compilation of NEMO V3.0 on HECToR was relatively straight-forward. When compil-
ing for both the XT4 and X2 some issues with the make clean not removing various files
and libraries were discovered. The file libioipsl.a does not get removed and a number
of *.mod and *.o files are not removed. This can create problems when swapping be-
tween compilers or between XT4/X2 builds as incompatible .mod or .o files persist which
causes the build to fail. The problem can be solved by the addition of: $(IOIPSL LIB)

$(LIBDIR)/*.mod $(LIBDIR)/*.o *.mod to the clean: macro in the top level NEMO
Makefile in /WORK.

A diff of the original and modified Makefile gives:

< $(RM) model.o $(MODDIR)/oce/*.mod $(MODEL_LIB)

$(SXMODEL_LIB) $(EXEC_BIN)

---

> $(RM) model.o $(MODDIR)/oce/*.mod $(MODEL_LIB)

> $(SXMODEL_LIB) $(EXEC_BIN) $(IOIPSL_LIB) $(LIBDIR)/*.mod $(LIBDIR)/*.o
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> *.mod

This modification ensures that all the .a, .o and .mod files are removed with make

clean. These suggested modifications were passed back to the NOCS researchers.

9.2 Performance for different compiler flags

A number of different compiler flags have been tested for NEMO V3.0. The results are
summarised in Table 10. These tests were all carried out using a 16 by 16 processor grid
with the land cells removed, that is jpni=16, jpnj=16 and jpnij=221. Both cores were
used for all tests, i.e. mppnppn=2 was specified in the batch script.

Compiler flags Time for 60 steps (seconds)

-O0 163.520

-O1 157.123

-O2 138.382

-O3 139.466

-O4 137.642

-fast -O3 fails with segmentation violation

-fast -O3 on PGI 7.2.3 fails with segmentation violation

-O2 -Munroll=c:1 runs 139.568

-O2 -Munroll=c:1 -Mnoframe runs 138.862

-O2 -Munroll=c:1 -Mnoframe -Mlre fails step 1

-O2 -Munroll=c:1 -Mnoframe -Mlre

-Mautoinline

fails step 1

-O2 -Munroll=c:1 -Mnoframe -Mlre

-Mautoinline -Mvect=sse

seg fault

-O2 -Munroll=c:1 -Mnoframe -Mlre

-Mautoinline -Mvect=sse -Mscalarsse

seg fault

-O2 -Munroll=c:1 -Mnoframe -Mlre

-Mautoinline -Mvect=sse -Mscalarsse

-Mcache align

seg fault

-O2 -Munroll=c:1 -Mnoframe -Mlre

-Mautoinline -Mvect=sse -Mscalarsse

-Mcache align -Mflushz

seg fault

-O2 -Munroll=c:1 -Mnoframe -Mautoinline

-Mscalarsse -Mcache align -Mflushz

runs??

Table 10: Runtime for 60 time steps for different compiler flags for the PGI compiler
suite. Version 7.1.4 used unless stated otherwise. All tests were run with jpni=16,
jpnj=16 and jpnij=221.

Increasing the level of optimisation from -O0 to -O2 gives an increase in performance.
Optimisation of -O2 up to -O4 gives minimal improvement. The -fast flag results in
a segmentation violation. As this flag invokes a number of different optimisations we
tested each of these in turn to ascertain which particular flags cause the problem. The
command pgf90 -help -fast lists the optimisations invoked by -fast, e.g.
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fionanem@nid15879:~> pgf90 -help -fast

Reading rcfile /opt/pgi/7.1.4/linux86-64/7.1-4/bin/.pgf90rc

-fast Common optimizations;

includes -O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline

== -Mvect=sse -Mscalarsse -Mcache_align -Mflushz

The -Munroll=c:1 flag enables loop unrolling which c:1 ensuring that all loops with
a length of 1 or more are completely unrolled. The -Mnoframe flag prevents the compiler
from generating code which fits in a stack frame. The -Mlre flag allows loop carried
redundancy elimination to occur - i.e. variables redundant within a loop are removed.
The -Mautoinline flag automatically enables function inlining in C/C++ and thus does
not apply to NEMO. The -Mvect=sse flag allows vector pipelining to be used with SSE
instructions. The -Mscalarsse flag generates scalar SSE code with xmm registers - this
flag also implies -Mflushz. The -Mcache align flag ensures that objects are aligned
along cache boundaries. The -Mflushz flag sets the SSE instructions to “flush-to-zero”
which ensures that numbers approaching zero get automatically zeroed.

From Table 10 we see that the addition of the flags -Mlre and -Mvect=sse cause the
code to crash at runtime. All other flags invoked by -fast do appear to not cause signif-
icant issues. The -Mlre causes the zonal velocity to become very large suggesting that
the loop redundancy elimination may have removed a loop temporary that was actually
required. The reason for the failure when -Mvect=sse is added is unknown. Ultimately
the addition of the additional flags doesn’t give significant performance improvements
over -O2 or -O3 and thus -O3 will be used in future.

9.3 Performance of NEMO V3.0

The scaling on NEMO V3.0 is similar to that of version 2.3. For 398 and 794 processor
runs the total runtime was found to be highly unstable, varying as much as 400%. Due
to these variations, the results shown by figure 9 have been taken from the best of 5
runs.

The variability of the total runtime appears to be highly dependent on the system
load. This makes predicting the length of a run or indeed attempting to specify an
appropriate wallclock time difficult. Anything that can be done to improve this situation
will be hugely beneficial to the researchers.

9.4 Converting NEMO to use netCDF 4.0

This section describes the procedure for adapting NEMO V3.0 to use netCDF 4.0. To
compile NEMO V3.0 with netCDF 4.0 the main NEMO Makefile must be altered such
that the NCDF INC and NCDF LIB variables point to the location of the netCDF 4.0 include
files and libraries. The paths to the HDF5, zlib or szip include files and libraries must
also be added. E.g. including the following in the three main NEMO Makefiles ensures
that the netCDF 4.0 library is used:

H5HOME = /work/n01/n01/fionanem/local/noparallel

ZLIBHOME = /work/n01/n01/fionanem/local

NCDF_INC = /work/n01/n01/fionanem/local/noparallel/include \

-I$(H5HOME)/include -I$(ZLIBHOME)/include
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Figure 9: Performance of NEMO V3.0 showing the breakdown of the total runtime for
various processor counts. All tests carried out using PGI compiler
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NCDF_LIB = -L/work/n01/n01/fionanem/local/noparallel/lib \

-lnetcdf -L$(H5HOME)/lib -lhdf5 -lhdf5_hl -L$(ZLIBHOME)/lib \

-lz -lsz -L$(H5HOME)/lib -lhdf5

After re-compilation the code is executed and the output verified as being correct using
the method described in section 5.3.

The procedure above uses netCDF 4.0 in classic mode and is the first step in con-
verting NEMO to use netCDF 4.0. However, what we actually want to do is to convert
NEMO to use netCDF 4.0 with compression and chunking enabled. This is best tackled
as a two stage process. The first step is to generate netCDF 4.0 format output files with-
out any compression/chunking. The second step is to add chunking and/or compression
and thus take advantage of the full functionality of netCDF 4.0.

For step one we need to tell netCDF that we want to take advantage of the new
features. This can be achieved by making some minor modifications to the NEMO code.
In particular, all subroutine calls to NF90 CREATE need to be modified such that each
instance of NF90 NOCLOBBER is replaced with NF90 HDF5. The two source files which
require alteration are:-

• IOISPL/src/histcom.f90

• IOISPL/src/restcom.f90

In addition, the file IOIPSL/src/fliocom.f90 also requires the variable m c to be set
to NF90 HDF5. At present the mode of this variable has been set directly after the
conditional block from lines 859-884. E.g. we replace

i_rc = NF90_CREATE(f_nw,m_c,f_e)

with

m_c = NF90_HDF5

i_rc = NF90_CREATE(f_nw,m_c,f_e)

With these modifications the code is then recompiled and tested. The main output files
should now be in netCDF 4.0 format which can be verified by attempting to read one of
the output files with versions of ncdump 1 which have been compiled with netCDF 3.6.2
and with netCDF 4.0, e.g.

1. Using ncdump from version 3.6.2 of netCDF (e.g. module load netcdf/3.6.2)
attempt to read one of the NEMO output files,
e.g. ncdump O25-V3 5d 19580101 19580101 grid U 0001.nc if this is successful
(i.e. the contents of the file are displayed) then the file is a classic netCDF 3.X
format file. If it is not an netCDF 3.X file then you’ll get an error message of
the form: ncdump: O25-V3 5d 19580101 19580101 grid U 0001.nc: NetCDF:

Unknown file format

2. Now try ncdump from netCDF 4.0. The version installed under
/work/n01/n01/fionanem/local/noparallel/bin/ncdump can be used or that

1ncdump is part of the netCDF library and is a executable which can be used to convert a netCDF

file into a text file.
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added to your path when the new centrally installed netCDF 4.0 is loaded (use
module load netcdf to achieve this). If the file is in netCDF 4.0 format then
the contents of the file will be displayed. Please note: netCDF 4.0 can also read
netCDF 3.X files so just testing with one version of ncdump is not sufficient.

The modifications described above allow netCDF 4.0 format files to be output from
NEMO. However, as yet no compression or chunking has been included. To use the
chunking/compression features of netCDF 4.0 additional modifications must be made to
the code. These modifications are outlined below:

1. Declare new variables relating to the chunking and compression, e.g.

INTEGER, dimension(4) :: chunksizes

INTEGER :: chunkalg, shuffle, deflate, deflate_level

chunksizes is an array containing the chunksize to be used for each dimension of
the dataset.

2. Initialise the chunking and compression variables, e.g.

chunksizes(1) = 10

chunksizes(2) = 10

chunksizes(3) = 10

chunksizes(4) = 1

deflate_level = 1 ! Turn compression on

deflate = 1 ! Level of compression

shuffle = 1 ! Allow shuffling

chunkalg = 0 ! Turn chunking on

Here chunksize is chosen such that it is less than the number of data points within
that dimension. It should be noted that for three-dimensional fields such as the
ice data (i.e. *icemod*.nc files) this may not be ideal.

3. Following each call to nf90 def var, add new calls to nf90 def var chunking and
nf90 def var deflate to ensure that chunking and compression is applied to each
output variable. An example of the original code would be:

iret = NF90_DEF_VAR (ncid,lon_name,NF90_FLOAT,dims(1:ndim),nlonid)

with the modified code example including the following two lines immediately after
the call to NF90 DEF VAR, e.g.

iret = NF90_DEF_VAR_CHUNKING(ncid,nlonid,chunkalg,chunksizes)

iret = NF90_DEF_VAR_DEFLATE(ncid,nlonid,shuffle,deflate, deflate_level)

Modifications were made to ../../IOIPSL/restcom.f90, ../../IOIPSL/histcom.f90
and ../../IOIPSL/fliocom.f90. However, after testing the code it became apparent
than only the changes to the ../../IOIPSL/histcom.f90 file are actually required for
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the test model. Furthermore, the changes were not added for the NF90 DEF VAR call at
line 1022 (unmodified code) as this was found to truncate the *icemod*.nc file.

The code was then re-tested and the size of the output files compared with those
created without and chunking/compression. For the original code some sample output
file sizes were as follows:

ls -l *0100.nc

-rw-r--r-- 1 fionanem n01 47364120 Apr 17 09:40 O25-V3_00000060_restart_0100.nc

-rw-r--r-- 1 fionanem n01 2286160 Apr 17 09:40 O25-V3_00000060_restart_ice_0100.nc

-rw-r--r-- 1 fionanem n01 7102636 Apr 17 09:40 O25-V3_CU30_19580101_19580101_grid_T_0100.nc

-rw-r--r-- 1 fionanem n01 3246008 Apr 17 09:40 O25-V3_CU30_19580101_19580101_grid_U_0100.nc

-rw-r--r-- 1 fionanem n01 3246013 Apr 17 09:40 O25-V3_CU30_19580101_19580101_grid_V_0100.nc

-rw-r--r-- 1 fionanem n01 15709982 Apr 17 09:40 O25-V3_CU30_19580101_19580101_grid_W_0100.nc

-rw-r--r-- 1 fionanem n01 1118067 Apr 17 09:40 O25-V3_CU30_19580101_19580101_icemod_0100.nc

For the modified version the corresponding files sizes were:

ls -l *0100.nc

-rw-r--r-- 1 fionanem n01 47364120 Apr 21 13:01 O25-V3_00000060_restart_0100.nc

-rw-r--r-- 1 fionanem n01 2286160 Apr 21 13:01 O25-V3_00000060_restart_ice_0100.nc

-rw-r--r-- 1 fionanem n01 1765659 Apr 21 13:01 O25-V3_CU30_19580101_19580101_grid_T_0100.nc

-rw-r--r-- 1 fionanem n01 932602 Apr 21 13:01 O25-V3_CU30_19580101_19580101_grid_U_0100.nc

-rw-r--r-- 1 fionanem n01 939433 Apr 21 13:01 O25-V3_CU30_19580101_19580101_grid_V_0100.nc

-rw-r--r-- 1 fionanem n01 2569717 Apr 21 13:01 O25-V3_CU30_19580101_19580101_grid_W_0100.nc

-rw-r--r-- 1 fionanem n01 536500 Apr 21 13:01 O25-V3_CU30_19580101_19580101_icemod_0100.nc

Comparing the output file sizes we see that the four *grid*.nc and *icemod*.nc files
have reduced in size by up to 3.55 times relative to the original data. The two restart
files are not affected as no compression/chunking has been applied to these. The overall
effect of the chunking/compression for the test model is summarised by table 11.

File name Disk usage for netCDF
3.X (MBytes)

Disk usage for netCDF
4.0 (Mbytes)

Reduction factor

*grid T*.nc 1500 586 2.56

*grid U*.nc 677 335 2.02

*grid V*.nc 677 338 2.00

*grid W*.nc 3300 929 3.55

*icemod*.nc 208 145 1.43

Table 11: Effect of chunking and compression on the size of the NEMO 3.0 output files.
For each file name the usage is the sum of all 221 individual processor output files.

The results presented in table 11 demonstrate that a significant reduction in disk
usage (∼4 Gbytes for this example) can be achieved by using the chunking and or
compression features of netCDF 4.0 within NEMO. For the test model, no significant
improvement in the runtime is observed however this is to be expected as the restart files
dominate in terms of their size. In our test model we run for 60 time steps, outputting
data every 30 time steps with a restart model written output after 60 time steps. How-
ever, for a production run of NEMO the model would typically run for in excess of 10,000
time steps with output every 300 steps and a restart file written every 1800 time steps.
Therefore an improvement in runtime would be expected due to the reduction in output
file size. The actual size of any improvement will depend on the output frequency cho-
sen, which in turn depends on the parameters being modelled and the particular science
studied.
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Conversion of the restart files to netCDF 4.0 and a full investigation of the optimal
chunksize/compression parameters were not possible due to a shift in focus requested by
the researchers where we were asked to concentrate on the nested AGRIF models.

10 NEMO AGRIF nested model running/debugging

In this section we describe the use of nested models in NEMO, investigate their per-
formance and discuss the issues associated with getting them to run successfully on
HECToR. An introduction to nested models is given in section 10.1 with the two dif-
ferent models (referred to as BASIC and MERGED) discussed in sections 10.2 and 10.3
respectively.

10.1 Introduction to the nested model problem

WP2 of the dCSE project involves investigating the performance and ease of implemen-
tation of nested models within NEMO. The first step is therefore to compile and run
a nested version of NEMO where a finer model is run inside the main (coarser) ocean
model - e.g. a 1◦ region nested inside a 2◦ model. Any number of nested regions can be
used and within each region multiple levels of nesting are also possible. Figure 10 illus-
trates this with an example showing the main model, A, containing two nested regions
B, and C with region C having one level of nesting and region B having two levels of
nesting.

Nested models in NEMO use the Adaptive Grid Refinement in Fortran (AGRIF)
pre-processor code called, conv, to generate the code for the nested regions. By default,
the NEMO code uses arrays of dimension (jpi, jpj) where jpi and jpj are set as
parameters within the code. The pre-processor completely re-structures the code by
inserting interface routines which pass array information from a special dynamically
allocated AGRIF data type the size of which is determined based on the desired size of
the nested region. Essentially the AGRIF pre-processor allows the same ocean model
to be run on grids with different resolutions in space and/or time. Further details on
running and setting up nested models within NEMO can be found at [10].

Two test models are supplied by the NOCS team, BASIC and MERGED. BASIC
is a largely unmodified version of the NEMO source code which attempts to use the
AGRIF pre-processor to set up a nested model. The BASIC model is a 2 degree model
inside which a 1 degree model is run. Only 1 nested region is used in the BASIC model.
The MERGED model is an extension of BASIC model including the NOCS specific code
changes. Unlike the BASIC model is has two nested regions. It also runs at a higher
resolution with the outer model resolution being 1 degree and the nested regions being
1

4
of a degree.
The nested models produce similar output files to the un-nested version of NEMO

(see section 5 for details) with the name of the files pre-pended by 1 for the nested
version. For example the normal, un-nested run output file is called ocean.output and
the corresponding run output from the nested region is called 1 ocean.output if one
nested region is used and 2 ocean.output if two nested regions are used.

We have been unable to get the nested models fully running on HECToR. We have
resolved the issues with the BASIC model but as yet the MERGED model does not
run successfully on HECToR. We have worked extensively with Steven Alderson from
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D

Figure 10: Schematic showing a possible NEMO grid, A, containing two nested regions
B and C. Nested region B contains a second level of nesting. Note that the schematic
is not drawn to scale, in practice the B, C and D regions would be smaller in physical
size and grid spacing than region A. However, their increased resolution may mean they
actually contain similar number of actual grid points.
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NOCS to resolve this problem. Currently (and since NERC projects left HPCx) the
NOCS team internal SGI cluster is the only system on which their version of the NEMO
AGRIF MERGED model is running. This system uses the Intel compiler suite. Getting
the MERGED model to run is a crucial part of WP2.

10.2 BASIC nested model

We begin by investigating the BASIC nested model. The code was initially compiled
using the same options used by NOCS to ensure that the errors they obtained could be
replicated. Initially, an optimisation level of -O3 and the PGI compiler suite was used
as this combination was found to perform best for the un-nested NEMO code.

The original version of the code (compiled with -O3) stops on time steps 27 and 54 (as
reported by time.step and 1 time.step files). The code exits normally when the zonal
velocities become too large - i.e. the model has become unstable. The ocean.output

file reports the following:

===>>> : E R R O R

===========

stpctl: the zonal velocity is larger than 20 m/s

======

kt= 27 max abs(U): 23.37 , i j k: 123 3 18

Because the error output appears in the un-nested output file this tells us that something
is wrong with the un-nested part of the model/calculation.

Before investigating this further the optimisation level was reduced to -O0 and the
code re-run. Setting the optimisation level to -O0 removes all optimisations and should
allow us to detect any possible bugs which could be causing the code to fail. Reducing
the optimisation level to -O0 results in the code running to completion, finishing on
time steps 5475 and 10950 as desired. To investigate which subset of the source code
is affected by the optimisation level the optimisation level is increased systematically.
Table 12 summarises the results.

Optimisation used time.step 1 time.step

WORK/Makefile AGRIF/Makefile IOIPSL/src/Makefile

-03 -O -O 27 54
-O0 -O0 -O0 5475 10950
-O1 -O0 -O0 5475 10950
-O1 -O1 -O1 5475 10950
-O1 -O2 -O2 5475 10950
-O1 -O3 -O3 5475 10950
-O2 -O1 -O1 27 54
-O3 -O1 -O1 27 54

Table 12: Code progress for different optimisation levels for the AGRIF BASIC model.
time.step and 1 time.step report the time step at which the run ended. A successful
run should end on steps 5475 and 10950.
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It appears that increasing the optimisation level of the main /WORK/Makefile from
-O1 to -O2 changes the code in such a way as to cause a crash. From the PGI documen-
tation the key differences between the optimisation levels are as follows:

• -O0 Level zero specifies no optimisation. A basic block is generated for each lan-
guage statement.

• -O1 Level one specifies local optimisation. Scheduling of basic blocks is performed.
Register allocation is performed.

• -O2 Level two specifies global optimisation. This level performs all level-one local
optimisation as well as level two global optimisation. If optimisation is specified
on the command line without a level, level 2 is the default.

Basically -02 includes global optimisations such as induction recognition and loop
invariant motion. Neither of these should cause the code to blow up but clearly something
is going wrong. It’s possible the optimisation highlights an existing bug in the code or
that the compiler is doing something it shouldn’t. It’s also possible that the optimisation
brings out an existing numerical instability, e.g. calculations being performed in a slightly
different order which results in the velocity increasing too fast. The later hypothesis can
be tested by reducing the time step used to see if this allows the code to run successfully.

The time step is specified in the namelist file(s) via the rdt parameter. For the
BASIC model the time step used in the nested model is half that used in the non-nested
model. The initial values of rdt for the non-nested and nested models are respectively
5760.0 seconds and 2880.0 seconds. To ascertain whether the time step is too large the
model can be re-run with a smaller time step. Initially the time steps were reduced by
half to 2880.0 and 1440.0 respectively, however, the zonal velocity still increased too fast.
Reducing the time steps but a factor of four relative the the original, i.e. to 1440.0 and
720.0 seconds allows the run to successfully.

We can gain a better understanding of what is going on by plotting out the zonal
velocity as a function of model time. The zonal velocity can be obtained by modifying
the stp ctl subroutine in stpctl.F90 such that it outputs the zonal velocity every time
step and not just when a problem occurs. A diff of the original and modified code gives:

diff stpctl.F90 stpctl.F90.orig

< !FR dump out velocity to file for the failed step

< WRITE(99,*) kt, zumax, ii, ij, ik

< !FR dump out velocity to file for the failed step

150,153d146

< !FR dump out velocity to file for every time step

< WRITE(99,*) kt, zumax, rdt

< !FR dump out velocity to file for every time step

Figure 11 shows the zonal velocity plotted against model time for the non-nested (i.e.
namelist model). Figure 12 shows the zonal velocity plotted against model time for the
nested (i.e. 1 namelist) model.

From figures 11 and 12 it is clear that the problem with the velocity occurs for the
non-nested model (see red line on figure 11). The original time step of 5760.0 and 2880.0
seconds for the non-nested and nested models is simply too large. Reducing the time step
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Figure 11: Zonal velocity against model time for the non-nested model. The top figure
shows the full plot with the bottom figure zoomed in on the first few time steps.
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Figure 12: Zonal velocity against model time for the nested model. The top figure shows
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by a factor of 4, to 1440.0 and 720.0 seconds prevents the zonal velocity from blowing up.
With the reduced time step the -O0 and -O2 versions of the code behave very similarly.
The zonal velocities are almost identical (the blue and green lines overlap on figures 11
and 12).

It seems there are two choices for running the AGRIF models; run with a code
compiled with -O1 to avoid the numerical instabilities or reduce the time step. The
second solution is safer as the model could become unstable even with -O1 or less. The
researchers have reduced the time step as suggested and confirmed that the results appear
sensible when compared with those obtained on their SGI cluster.

10.2.1 BASIC nested model performance

We have also investigated the performance of the BASIC model. Table 13 gives the total
runtime for several different optimisation levels running on 64 processors. The shortest

Optimisation used Time for 5475 steps (seconds)

-O0 -O0 -O0 1920

-O1 -O1 -O1 2283

-O2 -O2 -O2 1402

-O3 -O2 -O2 1336

-O3 -O3 -O3 1366

Table 13: Total runtime for the BASIC nested model over 5475 time steps for different
optimisation flags using the PGI compiler. The 3 levels of optimisation were applied
respectively to the Makefile, AGRIF/Makefile and IOIPSL/src/Makefile. All tests
were run with jpni=8, jpnj=8 and jpnij=64.

runtime is achieved when either -O3,-O2,-O2 or -O3, -O3, -O3 levels of optimisation
are used with very little difference between these. These results are consistent with the
non-nested version version of NEMO (c.f. sections 6.6 and 9.2).

The code was also tested on 16 up to 128 processors to examine the scalability of
the nested model. For each of these runs an optimisation level of -O3 -O2 -O3 was used
as this gave the best performance as detailed above. The scaling results for the BASIC
model are given in table 14. From table 14 we see that the 64 processor run gives the

No. of processors Time for 5475 steps (seconds) Cost per time step (AU’s)
16 4397 0.0172
32 2164 0.0169
64 1366 0.0208

128 1636 0.0510

Table 14: Total runtime of the BASIC nested model over 5475 time steps for different
processor counts. Optimisation levels of -O3, -O2 and -O2 were applied to the Makefile,
AGRIF/Makefile and IOIPSL/src/Makefile respectively.

fastest runtime for this particular model. However, the 32 processor run is actually more
efficient in terms of the AU usage per model time step. Providing this longer runtime is
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acceptable, researchers may wish to run this model on 32 processors in order to minimise
the cost (in AU’s) per model time step.

10.3 MERGED nested model

Having found the cause and a solution to the BASIC nested model crashing we now focus
on the MERGED model. This model is more complex because it allows for two levels of
nesting and also includes the code required by NOCS to carry out their research.

The MERGED AGRIF model also initially failed with an error of the form (from the
(ocean.output file):

===>>> : E R R O R

===========

stpctl: the zonal velocity is larger than 20 m/s

======

kt= 4 max abs(U): 50.06 , i j k: 243 56 53

and also from the (1 ocean.output) file:

===>>> : E R R O R

===========

stpctl: the zonal velocity is larger than 20 m/s

======

kt= 16 max abs(U): 461.8 , i j k: 314 3 30

According to the code output files (*ocean.output* and *time.step) the model
stops on time steps 4, 16 and 64 for the levels of nesting.

As with the BASIC model different compiler options were explored to see if the
optimisation level was a factor in causing the velocities to grow uncontrollably. The
MERGED model was compiled incrementally with optimisation levels from -O3 down to
-0O. For each optimisation level the code stops in the same manner as described above.

The time step, represented by the value of rdt in the namelist, 1 namelist and
2 namelist files was also varied to see if reducing it gave any improvement. Table 15
summarises the results.

Time step, rdt in seconds
namelist 1 namelist 2 namelist time.step 1 time.step 2 time.step

3600.0 900.0 225.0 4 16 62

1600.0 400.0 100.0 4 16 64

400.0 100.0 25.0 6 24 96

Table 15: Time steps at which MERGED AGRIF model crashes for different time steps

From table 15 it seems that regardless of the time step used the MERGED AGRIF
model continues to crash early on in the model run. This suggests that unlike the
BASIC model the choice of time step is not the issue. The zonal velocity was extracted as
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described above in section 10.2. Figure 13, shows the zonal velocity plotted as a function
of the elapsed model time for three different values of time step, rdt. From figure 13 its
clear that the problem lies with the outer-most (i.e. coarsest) model (namelist) with the
model using 1 namelist (i.e. first level of nesting) also affected but to a lesser degree.

Further investigation of the output files suggests that something actually goes wrong
prior to time step 4. The mpp output.0* files are found to contain NaN values as early
as time step 2. The cause of these NaN values is currently unknown but clearly they
should not be present if the code is running correctly.

Locating the cause of these NaN values will likely be fundamental in getting the
merged model to run on HECToR. Unfortunately, the PGI compiler doesn’t allow direct
trapping of NaN values. The -Ktrap flag can be used to trap a number of other numerical
problems, e.g. denormalised operand, divide-by-zero, overflow, underflow and inexact.
Trapping of NaN values may be possible by instrumenting the code with the isnan

function which is a logical function which returns true if a NaN value is detected and
false otherwise. To use this function the code must be instrumented with isnan() calls
everywhere where a NaN value is suspected.

The PathScale compiler, however, provides options which may help with NaN detec-
tion particularly if the NaN values are arising from uninitialised values. The two flags
of interest are:

• -trapuv - traps uninitialised values by explicitly setting them to NaN

• -zerouv - zeros all initialised values

Various attempts have been made to compile the merged model with the PathScale
compiler. The compiler fails with an internal error. The output from version 3.0 is
below:

ftn -freeform -c -Dkey_agrif -Dkey_agrif_nolim -Dkey_trabbl_dif

-Dkey_mpp_mpi -Dkey_orca_r1=64 -Dkey_lim2 -Dkey_dynspg_flt

-Dkey_diaeiv -Dkey_ldfslp -Dkey_traldf_c2d -Dkey_traldf_eiv

-Dkey_dynldf_c3d -Dkey_dtatem -Dkey_dtasal -Dkey_tradmp

-Dkey_trabbc -Dkey_zdftke -Dkey_zdfddm -O0 -r8

-module ../../../lib -I../../../lib -I../../../lib/oce

-I/home/n01/n01/fionanem/netcdf/3.6.2/include \

OPAFILES/lib_mpp.F90 || { if [ -f lib_mpp.L ] ;

then mv lib_mpp.L

../../../tmp ; fi ; false ; exit ; }

/opt/xt-asyncpe/1.0c/bin/ftn: INFO: linux target is being used

pathf90-3.0 INTERNAL ERROR: /opt/pathscale/lib/3.0/mfef95 died

due to signal 11

Please report this problem to <support@pathscale.com>.

Problem report saved as

/home/n01/n01/fionanem/.ekopath-bugs/pathf90-3.0_error_HgpoTn.i

Please review the above file and, if possible, attach it to

your problem report.

make: *** [../../../lib/oce/libopa.a(lib_mpp.o)] Error 1
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Version 3.1 was also tested, again it fails on file lib mpp.F90 but with a slightly
different error.

ftn -freeform -c -O0 -r8 -module ../../../lib -I../../../lib

-I../../../lib/oce -I/home/n01/n01/fionanem/netcdf/3.6.2/include \

lib_mpp.f|| { if [ -f lib_mpp.L ] ; then mv lib_mpp.L ../../../tmp ;

fi ;

false ; exit ; }

/opt/xt-asyncpe/1.0c/bin/ftn: INFO: linux target is being used

Signal: Segmentation fault in IR->WHIRL Conversion phase.

"lib_mpp.f": Error: Signal Segmentation fault in phase IR->WHIRL

Conversion -- processing aborted

*** Internal stack backtrace:

pathf90-3.1 INTERNAL ERROR: /opt/pathscale/lib/3.1/mfef95 died due

to signal 4

make: *** [../../../lib/oce/libopa.a(lib_mpp.o)] Error 1

These errors suggest an internal problem with the PathScale compiler and as such
will need to be referred back to the compiler developers for a bug fix. This has been
submitted as HECToR query Q29941 and is currently under investigation.

With the PGI compiler, it transpires the -Msave flag has the side-effect of initialising
variables to zero. Compiling with this flag results in the code hanging or taking an
inordinate amount of time to run (1 step complete in an hour on 256 processors) which
makes its use impractical.

We have also tried compiling with the -Mbounds flag which performs array bounds
checking at compile and runtime. Running the executable with -Mbounds caused the
code to crash with an error message stating that one of the array indices was negative.
The affected file was fldread.F90. Removing -Mbounds and then re-running whilst
writing out the affected indices demonstrated that no negative values occur. It’s possible
therefore, that the -Mbounds compiler flag, has altered the code in some way as to create
or highlight a new problem which doesn’t appear when the flag is omitted. The results
of this are somewhat inconclusive.

The Totalview debugger should be able to provide some helpful information. E.g.
tracing through the code, watching variables etc. Unfortunately it has so far not been
possible to obtain any symbolic information when the nested version of NEMO (or indeed
any code) is compiled with the PGI compiler. The problem has been replicated with a
simple helloworld type and filed as a bug with Cray/Totalview via HECToR Q22386.
The PathScale compiler does not suffer from this problem but as we cannot compile the
code with PathScale this doesn’t help.

A number of attempts have been made to compile the code on the TDS as this has
the latest versions of the compilers, system libraries, operating system etc. However, no
PathScale licence is present on the TDS and the Totalview licence also appears to be
invalid and therefore limited progress was possible on the TDS.
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11 Conclusions and future work

In this section we summarise the work carried out during the NEMO dCSE project and
present the main conclusions. Additional work carried out during the project is also
summarised along with some suggestions for future work.

11.1 Summary of work and conclusions

Two different versions of NEMO (2.3 and 3.0) have been compiled and tested on HEC-
ToR. The performance of these versions has been investigated and an optimum processor
count suggested based on the researchers’ requirements for job turn-around. The per-
formance of both the PathScale and PGI compilers has been investigated along with
an investigation of how the performance varies with the choice of compiler flags. The
NEMO code has been found to scale up to 1024 processors with the best performance
in terms of runtime versus AU usage being obtained between 128 and 256 processors.
Running NEMO in single core mode is found to be up to 18.59% faster than dual core
mode, however, the reduction is not sufficient to warrant the increased AU usage. The
choice of grid dimensions has been investigated and is found to be optimal for square
grids. Where square grids are not possible choosing the dimensions such that the number
of cells in the horizontal direction is less than the number in the vertical direction (i.e.
choosing jpni < jpnj within the code) gave the best performance. Removal of the land
only squares from the computations gave significant reductions to the AU usage, by as
much as 25% at larger processor counts. The runtime was also found to decrease, albeit
by a lesser extent. Profiling of the code suggests that NEMO spends a considerable
amount of time in initialisation and file I/O and thus any reduction that can be made
in this area will be beneficial.

NetCDF 4.0, HDF5 1.8.1, zlib 1.2.3 and szip have been installed and tested as part
of this project. Initially, beta releases were used until the final release versions became
available in June 2008. NetCDF 4.0 is found to give a considerable reduction to both the
amount of I/O produced and the time taken in I/O when using the NOCSCOMBINE
tool. In addition, the version of netCDF 4.0 installed as part of this project is found to
be between 8-20% faster than that installed centrally (via modules) on the system.

NEMO has been converted to use netCDF 4.0 for its main output files resulting in a
reduction in output file size of up to 3.55 times relative to the original netCDF 3.X code.
For the test model no significant runtime improvement is observed. It is expected that
a real research type run should benefit more due to the different frequency of output
involved. The restart files have not been converted to use netCDF 4.0.

The BASIC nested model has been compiled and tested and problems with the time
step interval identified and rectified. The performance of the BASIC nested model has
been investigated with the optimal processor count (in terms of AU usage per time
step) found to be 32. The more complex MERGED nested model has not yet run
successfully on HECToR. The code compiles but crashes due to the velocity becoming
extremely large and NaN values occurring. Various compiler and debugger problems
were experienced making identifying the reason for this crash very problematic. These
issues have been reported to Cray (HECToR queries Q29941 and Q22386 both described
within the report) and are currently awaiting resolution.
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11.2 Other work

Below, is a list summarising additional work also carried out as part of the NEMO dCSE
project:

• Presentation at HECToR User Group meeting, September 2008

• Presentation at HPCx Parallel I/O Workshop, December 2008

• Article for EPCC News [11]

• Contributed to article for Scientific Computing World [12]

• Highlighted bugs with Totalview/PGI and the PathScale compiler (HECToR queries
Q29941 and Q22386).

11.3 Future work

Some suggestions for future work on this subject are given below:

• Full investigation of the optimal chunking parameters when using netCDF 4.0 with
NEMO.

• Identify whether converting the restart files to netCDF 4.0 format is feasible.

• Further work on the MERGED AGRIF model subject to having access to a working
debugger or bug fix for the PathScale compiler.
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A NEMO output comparison scripts

This appendix contains the scripts used to compare the NEMO output files following any
changes to the code. The scripts are called test output.sh and get parameters.sh.
Their functionality is as follows:-

• test output.sh - driver script which calls get parameters.sh once for every pa-
rameter which needs to be extracted and compared. The TEST OUTPUT DIR variable
will need to be changed to point to the directory containing the output to be ver-
ified.

• get parameters.sh - extracts parameters from NEMO netCDF output files and
uses NOCSCOMBINE to combine the into a single file before using the CDFTOOLS
cdfmeanvar to compare the two sets of data.

The usage is as follows:

./test_output.sh

However, this would normally be run within a serial batch script to avoid using
excessive resources on the login nodes.
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Source for test output.sh

##

## Copyright (c) The University of Edinburgh 2009. All Rights Reserved.

##

#!/bin/bash

#

# Script to test the NEMO output against the vanilla output to ensure that

# changes have not damaged the numerical output

#

# This script will generally be run via the serial queues as it could

# potentially take a number of minutes.

export PATH=$PATH:~/scripts

# Give list of files to be processed/created:

filelist="votemper vozocrtx vomecrty vovecrtz isssalin"

# VANILLA_OUTPUT_DIR = directory containing original NEMO 3.0 output

# created with netCDF 3.6.2 in Classic mode.

export VANILLA_OUTPUT_DIR=/work/n01/n01/fionanem/NEMO_V3.0/ORCA025/EXP_V3.0_005

# TEST_OUTPUT_DIR = directory containing test dataset

export TEST_OUTPUT_DIR=/work/n01/n01/fionanem/NEMO_V3.0/ORCA025/EXP_V3.0_015

# Check whether vanilla output exists and if not create it - we need one

# condition per file as different input data are involved for each test

cd $VANILLA_OUTPUT_DIR

for file in $filelist

do

if [ ! -e ${file}_ncdf3.nc ]

then

echo "Creating file ${file}_ncdf3.nc"

if [ $file = "votemper" ]

then

# echo "RUNNING get_parameters.sh O25-V3_CU30_19580101_19580101_grid_T_0000.nc 3 votemper"

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_T_0000.nc 3 votemper

fi

if [ $file = "vozocrtx" ]

then

echo "Running..."

# echo "RUNNING get_parameters.sh O25-V3_CU30_19580101_19580101_grid_U_0000.nc 3 vozocrtx"

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_U_0000.nc 3 vozocrtx

fi

if [ $file = "vomecrty" ]

then

echo "Running..."

# echo "RUNNING get_parameters.sh O25-V3_CU30_19580101_19580101_grid_V_0000.nc 3 vomecrty"

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_V_0000.nc 3 vomecrty

fi

if [ $file = "vovecrtz" ]

then
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echo "Running..."

# echo "RUNNING get_parameters.sh O25-V3_CU30_19580101_19580101_grid_W_0000.nc 3 vovecrtz"

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_W_0000.nc 3 vovecrtz

fi

if [ $file = "isssalin" ]

then

echo "Running..."

# echo "RUNNING get_parameters.sh O25-V3_CU30_19580101_19580101_icemod_0000.nc 3 isssalin"

get_parameters.sh O25-V3_CU30_19580101_19580101_icemod_0000.nc 3 isssalin

fi

else

echo "The file ${file}_ncdf3.nc already exists"

fi

done

# Combine .nc files and create test datasets:

cd $TEST_OUTPUT_DIR

for file in $filelist

do

echo "About to remove file ${file}_ncdf4.nc before new run"

# Uncomment when running in batch/new tests

# rm ${file}_ncdf4.nc

done

# Uncomment for new run. All 5 files need to be created for each new test

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_T_0000.nc 4 votemper

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_U_0000.nc 4 vozocrtx

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_V_0000.nc 4 vomecrty

get_parameters.sh O25-V3_CU30_19580101_19580101_grid_W_0000.nc 4 vovecrtz

get_parameters.sh O25-V3_CU30_19580101_19580101_icemod_0000.nc 4 isssalin

# Now we’ve extracted a dataset from each type of output file need to compare with

# The corresponding vanilla output and ensure the numerical values match up.

testoutputfile="test.output" # Contains output from the comparison

rm $TEST_OUTPUT_DIR/$testoutputfile # Remove old file before comparison

for file in $filelist

do

rm tmpfile # Ensure the tmpfile is removed prior to any comparison of the output

echo "Testing file = ${file}_ncdf3.txt" >> $testoutputfile

diff $VANILLA_OUTPUT_DIR/${file}_ncdf3.txt $TEST_OUTPUT_DIR/${file}_ncdf4.txt >> $testoutputfile

diff $VANILLA_OUTPUT_DIR/${file}_ncdf3.txt $TEST_OUTPUT_DIR/${file}_ncdf4.txt >> tmpfile

if [ -s tmpfile ]

then

echo "There is a difference between the test files" >> $testoutputfile

else

echo "No differences" >> $testoutputfile

fi

echo " " >> $testoutputfile

done

echo "*** All tests completed ***" >> $testoutputfile

# Tidy up - could remove tmpfile here to ensure it doesn’t exist between tests.

# rm tmpfile
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Source for get parameters.sh

##

## Copyright (c) The University of Edinburgh 2009. All Rights Reserved.

##

#!/bin/bash

#

# Script to extract parameters from NEMO netCDF output so that

# output can be verified and compared etc

#

# $1 = name of the file series to be combined and tested

# e.g. ORCA025-N200_5d_19580101_19580101_grid_T_0000.nc

EXPECTED_ARGS=3

if [ $# -ne $EXPECTED_ARGS ]

then

echo " "

echo "Script for extracting parameters from NEMO netCDF output"

echo "so that output can be compared between runs"

echo " "

echo "Usage: ‘basename $0‘ {filename.nc netCDF_version(3 or 4), variable (e.g. votemper)}"

exit $E_BADARGS

fi

if [ $2 -ne 3 -a $2 -ne 4 ]

then

echo "You must specify whether the file is netCDF3 of netCDF4 format"

exit

fi

# Set paths to different versions of nocscombine/cdftools - need different

# versions for Classic and netCDF4 files - control selection with input $2

if [ $2 -eq 3 ]

then

export NOCSCOMB_EXE=/home/n01/n01/fionanem/NOCSCOMBINE/nocscombine

export CDFTOOLS_DIR=/home/n01/n01/fionanem/CDFTOOLS/bin

else

export NOCSCOMB_EXE=/home/n01/n01/fionanem/NOCSCOMBINE/nocscombine4_release_nozlib

export CDFTOOLS_DIR=/home/n01/n01/fionanem/CDFTOOLS/bin_nc4_release

fi

# Give the output netCDF file a name - name is based on variable being

# extracted $MYVAR and netCDF version (3 or 4)

export MYVAR=$3

export OUTFILE_NC=${MYVAR}_ncdf${2}.nc

export OUTFILE_TXT=${MYVAR}_ncdf${2}.txt

# Run NOCSCOMBINE to create large .nc file

echo "Running NOCSCOMBINE on $1 with $NOCSCOMB_EXE"

echo "DEBUG: RUNNING: $NOCSCOMB_EXE -f $1 -d $MYVAR -o $OUTFILE_NC"

$NOCSCOMB_EXE -f $1 -d $MYVAR -o $OUTFILE_NC

# Extract mean of variable using cdfmeanvar

echo "Running cdfmeanvar on $OUTFILE_NC, creating output $OUTFILE_TXT"

echo "DEBUG: RUNNING: $CDFTOOLS_DIR/cdfmeanvar $OUTFILE_NC $MYVAR T > $OUTFILE_TXT"

$CDFTOOLS_DIR/cdfmeanvar $OUTFILE_NC $MYVAR T > $OUTFILE_TXT
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B Some notes on HDF5 datasets

HDF5 is a set of tools and libraries that allows extremely large and complicated data
collections to be managed. The file format used by HDF5 is designed to be portable.
Further information on HDF5 can be found at [8].

An HDF5 dataset is an object comprised of a collection of data elements and meta-
data. In addition the dataset may have optional attribute objects.

• Data elements - one dimensional or multi-dimensional arrays. Can be specified
types (integer, real, double, char) or compound type (c.f. C like structs)

• Metadata - describes the data elements, data layout and all information necessary
to read/write (e.g. chunking/compression used) and interpret the data.

• Attributes - optional, meta data object which can be used to describe the nature
and/or intended use of a data set.

When an HDF5 dataset is created a number of properties of the dataset are set:

• name - name of dataset usinb alphanumeric ASCII characters

• dataspace - defines the number of dimensions, the current extent in each dimension
and the maximum allowed extent in each dimension.

• datatype - a dataset has a datatype associated with it which describes the layout
of the raw data in the file. The file datatype is set when the dataset is created and
cannot be changed.

• storage properties - control how the data is stored and whether any chunking
or compression is used. The storage properties are set when the dataset is created
and cannot change.

Most of these dataset properties are permanent, they cannot be changed during the
lifetime of the dataset. The key exception is the, dataspace which can be expanded up
to its maximum dimensions.

Data Transfer - e.g. how does the data get from the application to a physical file?
Essentially the HDF5 library implements data transfers through a pipeline which in-
cludes:

• Data transformations

• Chunking

• I/O operations

• optional filters, e.g. compression, can also be added to the pipeline

Storage allocation in the file, early, incremental, late - may need consideration for
parallel I/O.
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B.1 HDF5 Filters

There are a number of different filters which can be applied to an HDF5 dataset:

• N-bit filter - essentially compresses the data by removing the unused bits before
storing the data on output. The data is then unpacked on input restoring the
missing bits. Quite complex to use but may save diskspace. Checks would be
required such that no information is lost from the data.

• Scale-offset filter - performs a scale and offset on each data value truncating the
resulting value to a fixed number of bits before storing. E.g the operation performed
is dnew = a ∗ dold(i) + b where dold is the original data value, dnew is the new data
value, a is the scale and b is the offset. minimum-bits determines the minimum
number of bits that will be used. For integer data the filter is lossless (unless
too small a value for minimum-bits is selected. However, for floating point data,
the filter translates the floating point data to integer data (the filter is lossy -
information is lost due to its action) and so is not useful for NEMO.

• Szip filter - the Szip compression
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