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ABSTRACT

A numerical model for the simulation of sea ice circulation and thickness over a seasonal
cycle is presented. This model is used to investigate the effects of ice dynamics on Arctic ice thick-
ness and air-sea heat flux characteristics by carrying out several numerical simulations over the entire
Arctic Ocean region. The essential idea in the model is to couple the dynamics to the ice thickness
characteristics by allowing the ice interaction to become stronger as the ice becomes thicker and/or
contains a lower areal percentage of thin ice. The dynamics in turn causes high oceanic heat losses in
regions of ice divergence and reduced heat losses in regions of convergence. To model these effects
consistently the ice is considered to interact in a plastic manner with the plastic strength chosen to de-
pend on the ice thickness and concentration. The thickness and concentration, in turn, evolve accord-
ing to continuity equations which include changes in ice mass and percent of open water due to
advection, ice deformation and thermodynamic effects.

For the standard experiment an integration of eight years in length is performed at one day timesteps
and 125 km resolution in order to obtain a cyclic equilibrium. A zero ice strength condition is used at
the Greenland-Spitsbergen passage to allow natural outflow or inflow. Several other shorter experi-
ments, including a case without open water effects, are also run for comparison. Input fields consist
of observed time varying geostrophic winds over a one year period, fixed geostrophic ocean currents,
and geographically invariant ice growth rates dependent on ice thickness and season.

Many of the observed features of the circulation and thickness of the Arctic ice cover are repro-
duced by the model. The average annual drift shows the classic anticyclonic ice flow in the Beaufort
Sea together with a transpolar drift of ice from the Siberian coast toward the Greenland Sea. In
addition, the nonlinear plastic rheology allows the formation of a shear zone (velocity discontinuity)
from time to time off the North Slope of Alaska. The average rate of ice export out of the basin is
~0.1 Sv in reasonable agreement with observational estimates. Geographical ice thickness contours
show ice in excess of 6 m along the Canadian Archipelago with thicknesses decreasing to 2 m near
the Siberian coast. The form of these contours is in good agreement with that estimated from sub-
marine sonar data and aerial ridge surveys. In summer a low compactness region of up to 50% open
water builds up off the Alaskan and Siberian coasts, in general agreement with satellite-derived ice
concentration charts. Further from shore, smaller, but still significant, amounts (~10%) of open water
also form in summer. An important, less verifiable characteristic is that the annual net ice production
is dominated by the North Slope and Siberian nearshore regions where, on the average, offshore advection
creates open water and thinner ice. Overall the simulation results suggest that lateral heat transport
due to ice motion is of the same order of magnitude as vertical air-sea heat fluxes.
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1. Introduction

In the polar regions the interaction between the
atmosphere and the oceans is significantly affected
by both the dynamic and thermodynamic char-
acteristics of sea ice. Numerical studies examining
the role of sea ice in climatic change to date (e.g.,
Maykut and Untersteiner, 1971; Semtner, 1976a;
Washington et al., 1976; Bryan et al., 1975; Parkin-
son and Washington, 1979; Manabe er al., 1979)
have primarily emphasized the thermodynamic char-
acteristics, and have concentrated on properly

! Work performed while on leave as a Visiting Fellow, Geo-
physical Fluid Dynamics Program, Princeton University, Prince-
ton, NJ 08540.

estimating the heat flux through an ice cover of con-
stant thickness with possibly a certain fraction of
leads. While some of these studies have included
transport effects (e.g., Bryan et al., 1975; Parkinson
and Washington, 1979; Manabe et al., 1979) the
dynamics and the resultant opening and closing of
leads have been treated in only a simplified ad hoc
manner. In particular, none of these studies have
made use of a well-defined rheology relating ice
deformation and thickness to the internal stresses
in the ice cover. As a step toward remedying
this situation, this paper discusses the development
and numerical testing of a more general sea ice
model in which the strength of the ice interaction
is related to the ice thickness characteristics by
means of a plastic rheology. In this work, emphasis
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has been placed on developing a model suitable for
seasonal simulations over large regions, and hence
usable in numerical investigations of climate.

In an ice-covered ocean, rates of freezing de-
pend on the distribution of ice thicknesses and open
water present in any one area which, in turn, are
dependent on the ice transport patterns. On the other
hand, the ice transport is modified by the ice thick-
nesses and open water which determine the amount
of stress the ice can transmit. In a dynamic
thermodynamic model these two effects are coupled
by allowing the ice interaction to depend on the ice
thickness and fraction of open water, which, in turn,
are functions of both the thermodynamics and dy-
namics.

Previous studies examining the effects of ice inter-
action have usually emphasized the dynamics only.
The ice circulation over the whole Arctic Ocean
has been examined by Felzenbaum (1958) using
free drift calculations (no ice interaction) based on
the mean annual geostrophic wind and currents.
The same input fields were used in subsequent
examinations by Campbell (1965), who assumed a
Newtonian viscous ice interaction, and by Rothrock
(1975a) who assumed the ice was incompressible.
Studies by Hibler (1974) and Hibler and Tucker
(1979) examined drift and deformation results far
from shore using a linear viscous model with
idealized boundary conditions. Nearshore studies
off the North Slope of Alaska have been done by
Pritchard (1978) using different plastic rheologies.
In all these studies ice drift has been calculated
without any coupling to ice thickness.

Utilization of a coupled dynamic thermodynamic
model allows a more general simulation to be
carried out. By integrating such a model over suf-
ficiently long time intervals (several years) results
for both drift and thickness can be obtained which
are relatively independent of initial conditions.
While a number of short-term integrations of such
coupled models have been done for localized re-
gions [most notably in conjunction with the AIDJEX
Program (e.g., Coon et al., 1976; Pritchard et al.,
1977)] less work has been done on a simulation to
cyclic (annual) equilibrium. To the author’s knowl-
edge, the present study is the first attempt to use
such a coupled model to carry out a long-term
equilibrium simulation of the ice cover of the Arctic
Ocean.

Such an equilibrium simulation over a seasonal
cycle allows a comparison to be made to con-
siderable data in addition to drift and deformation
results. In particular, comparisons may be made to
ice thickness contours estimated from submarine
sonar data and aerial ridge surveys, ice concentra-
tion estimates taken from satellite imagery, observa-
tionally estimated mass balance statistics, the extent
of the reduction of the ice interaction strength in
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summer, and the formation of a shear zone off the
North Slope of Alaska. In addition, such a study
yields insight into certain poorly documented cli-
matic characteristics such as the geographical
variation in sea air heat fluxes. The primary purpose
of this paper is to show that many of these ob-
served arctic ice circulation and thickness char-
acteristics can be simulated by including the effects
of ice interaction in a coupled dynamic thermo-
dynamic model. For this purpose relatively idealized
thermodynamics and a simplified ice thickness
distribution have been used to be superseded by
more complete parameterizations in further work.

2. Description of the model
a. Outline of essential features

The model described here is patterned after
the model developed by Coon er al. (1974) in con-
junction with the Arctic Ice Dynamics Joint Ex-
periment (AIDJEX). The model is not as detailed
as the AIDJEX formulation [for a review see Coon
(1979)]1, but is a more practical design which allows
larger time steps and a simpler treatment of bound-
aries. Here, particular emphasis was placed on de-
veloping a model suitable for long-term simulations,
which are relevant to climatic studies. A notable
feature of this work is the development of a viscous-
plastic constitutive law, which allows nonlinear
plastic flow to be modeled without severe time
step limitations. The components of the model are
a momentum balance which includes air and water
stresses, Coriolis force, internal ice stress, inertial
forces and ocean tilt; a constitutive law which re-
lates the ice stress to the strain rate and the ice
strength; a simple ice thickness distribution (con-
sisting of the fraction of open water and the total
ice mass) which accounts for the change of ice
thickness and concentration due to growth or abla-
tion, advection and deformation; and an ice strength
determined as a function of the ice thickness and
fraction of open water.

Probably the most important aspect of this model
is the constitutive law which describes the nature
of the ice interaction. Previous seasonal simula-
tions have used ad hoc velocity corrections to ap-
proximate this interaction. In particular, in calcula-
tions using a global atmosphere ocean model,
Bryan er al. (1975) and Manabe et al. (1979) allow
the sea ice to drift with the upper ocean until it
reaches a fixed cutoff thickness. When this occurs,
its motion is totally stopped. In a simulation using
climatological input data, Parkinson and Washing-
ton (1979) correct iteratively the free drift ice
velocity field (obtained by neglecting the ice interac-
tion) to insure the maintenance of a fixed fraction
of leads. This iterative procedure, however, is per-
formed without regard to conservation of momen-
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tum, and in practice appears to stop all motion
rather than modify the relative motion as occurs in
reality.

A more consistent way to treat the ice interac-
tion is to use a rheology employing a constitutive
law relating the ice deformation and thickness to
the internal stresses in the ice cover. Various
studies associated with the AIDJEX program have
indicated that rate-independent plastic rheologies
seem most appropriate for describing sea ice. The
idea in these plastic rheologies is to allow equiva-
lent stresses to occur in the ice pack for both
small and large deformation rates. This is in contrast
to linear viscous rheologies where stresses are pro-
portional to the deformation rate (for a one-di-
mensional example see Fig. 1). In addition, by
using such a rheology it is possible to allow the
ice to strongly resist compressive and shearing
deformation, while allowing dilation (opening) to
occur with little or no stress.

In order to model plastic behavior Coon et al.
-(1974) consider the ice to be an elastic-plastic con-
tinuum in which, for certain strain states, the ice
behaves elastically. However, inclusion of the
elasticity necessitates keeping track of the strain state
of a given portion of ice indefinitely (which usually
forces a Lagrangian formulation). Moreover, the
mathematical complexities inherent in keeping
track of the elastic behavior are substantial —both
theoretically (Pritchard, 1975) and numerically
(Colony and Pritchard, 1975).

To avoid these complexities, while still retain-
ing plastic behavior under flow, sea ice is here con-
sidered to be a nonlinear viscous compressible
fluid. In this more conventional fluid approach,
the nonlinear viscosities are adjusted so that the
ice interacts in a rigid-plastic manner for normal
deformation rates and as a linear viscous fluid, with
a pressure term, for very small deformation rates.
Use of this viscous-plastic approach allows the
essential features of plastic flow to be modeled
without time step limitations (by means of implicit
numerical techniques) and facilitates an Eulerian
formulation.

A comparison, in the one-dimensional case, be-
tween this viscous-plastic approach, the elastic-
plastic method and linear viscosity is illustrated in
Fig. 1. In the elastic-plastic case the material re-
sists compression with a fixed stress, once a cer-
tain converging deformation has occurred, and has
no resistance to diverging strains. In the viscous-
plastic case similar behavior occurs except that the
stress state is determined by the magnitude of the
strain rate rather than the strain. The important
difference between both plastic approaches and
linear viscosity is that the stresses are large even
for small strain rates and independent of the rate
of deformation (except for very small rates). More
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F1G. 1. One-dimensional comparison of elastic-plastic, viscous-
plastic and linear viscous rheologies. Note that the viscous-
plastic rheology may be considered to be a nonlinear viscous
fluid with a pressure term: o = né — 0.5P*, where 7 is the mini-
mum (0.5P*/| €| &) with & a constant.

detailed justifications for such rate independent
behavior are discussed by Rothrock (1975b) and
Coon (1979).

An essential difference between the viscous-
plastic law and the elastic-plastic law is the way in
which relatively motionless situations are treated.
In the elastic-plastic case a high stress can be main-
tained in such cases without any relative ice mo-
tion by allowing the ice to behave elastically. In
the viscous-plastic case such ‘‘rigid”’ cases are ap-
proximated by a state of very slow flow, or creep.
Which closure scheme is more physically realistic
remains to be seen. However, for most applica-
tions this question is moot. In particular, by
making the strain rates for the onset of plastic
behavior very small, the amount of creep occurring
in a viscous-plastic simulation can be effectively
made negligible.

The other important aspects of the model are an
ice thickness distribution and a relationship be-
tween this thickness distribution and the strength of
the ice interaction. A framework for dealing with
such a variable ice thickness has been formulated
by Thorndike et al. (1975), who introduced an
areal ice thickness distribution (fraction of area
covered by ice of a given thickness), and developed
equations for the dynamic thermodynamic evolu-
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tion of this distribution. To couple the ice thickness
distribution with the ice strength, Rothrock (1975b)
suggested that the rate of work done on the ice
through ridging might be related to the work done
by the ice interaction forces.

For the model described here a simplification of
the Thorndike-Rothrock approach is developed. In
particular, only two categories of ice are considered:
thin and thick. The thin ice is characterized by a
certain areal fraction of open water, while the thick
ice, covering the remaining area, is taken to be of
constant thickness for growth rate estimates. The
effect of ice dynamics on the thin ice is parameterized
by allowing, in addition to advection, open water
to be formed under diverging ice conditions and to
be removed for converging conditions. To param-
eterize the effect of thermodynamics on thin ice,
the fraction of open water is taken to decrease
under growth conditions and increase under melt-
ing conditions. In addition, the total ice mass at
any given point is taken to obey continuity require-
ments with the mass increasing under growth (by
the combined ice formed over the open water and
the thick ice) and decreasing under melting condi-
tions. To relate the ice interaction to the variable
ice thickness the ice strength is taken to be a simple
function of the ice thickness and open water.

The modifications to the Thorndike-Rothrock ap-
proach developed here are not considered funda-
mental changes. Rather, they are considered to be
useful simplifications which facilitate interpretation of
the simulation results and were felt to be adequate
for this particular study. Moreover, while relatively
simple, the parameterization proposed here does
capture many features of the variable thickness of
sea ice vis-a-vis growth and ice strength.

In the remainder of this section, the detailed
model equations and numerical scheme are pre-
sented. Since the essential features have already
been outlined, readers less interested in such de-
tails might wish to skip to the simulation results in
Section 3.

b. Model equations

The equations for the various components of this
ice model are presented below.

1) MOMENTUM BALANCE

For the momentum balance the ice is considered
to move in a two-dimensional plane with forcing
fields operating on the ice via simple planetary
boundary layers. In Cartesian coordinates in the
plane of motion of the sea ice the momentum
balance is

mDu/Dt = —mfk X u + 74 + 7,

— mg gradH + F, (1)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 9

where D/Dt = 8/8t + u-V is the substantial time de-
rivative, k a unit vector normal to the surface, u
the ice velocity, f the Coriolis parameter, m the
ice mass per unit area, 7, and 7, forces due to
air and water stresses, H the sea surface dynamic
height, g the acceleration due to gravity and F the
force due to variation in internal ice stress.

The air and water stress terms in the momentum
balance are determined from simple nonlinear inte-
gral boundary-layer theories, assuming constant
turning angles (Brown, 1979; McPhee, 1975):

Ta = poCa|U,|(U, cos¢ + k X U, sing), @)
Tw = Pwa|Uw - u|[(Uw —u)cosf + k
X (U, — u)sinf], @)

where U, is the geostrophic wind, U, the geo-
strophic ocean current, C, and C, air and water
drag coefficients, p, and p,, air and water densities
and ¢ and @ air and water turning angles. The geo-
strophic ocean currents are computed by U,
= gf 'k X gradH. .

In the atmospheric case the simple integral ap-
proach in Eq. (2) consists of estimating the surface
wind from the geostrophic wind and then using a
square drag law. (In this equation the ice motion
has been neglected since the velocity of the air is
much larger than the ice velocity.) For the ocean
case, the ice velocity relative to the currents beneath
the boundary layer is used to estimate a quadratic
water drag. In the case that U, is neglected the
sea ice is effectively considered to be moving across
a stagnant ocean with a boundary layer induced
by the ice motion. While simple, these integral
formulations do appear to give adequate wind and
water stress estimates for the ice drift, and have,
for example, been used successfully to model stress-
free ice drift during the summer (McPhee, 1979).

In all the calculations done here the geostrophic
currents are considered to be steady. Estimates of
these currents were obtained using long-term values
for the sea surface height (Coachman and Aagaard,
1974). While a first step adequate for this study, this
approximation ignores some important feedback
effects. The stress transmitted into the Arctic
Ocean is in large part due to the motion of the ice
cover. Consequently, the ice drift (and thus the ice
interaction) can modify the ocean currents over a
long time period. In light of this fact an important
extension of this work would be to couple the ice
model to a three-dimensional ocean model for an
Arctic Ocean study. Such a study could be com-
pared to Semtner’'s (1976b) simulations where
variable ice interaction effects were not considered.

Arctic observational studies, together with em-
pirical model calculations, have yielded magnitude
estimates for the various terms in the momentum
balance. Measurements (Thorndike, 1973) indi-
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cate that in winter the acceleration term is generally
negligible. Between the steady current and wind,
the wind stress is the most predominant driving force.
Empirical linear calculations (Hibler and Tucker,
1979) show the effects of the steady geostrophic
currents and ocean tilt to typically affect ice velocities
by only a few percent. However, for cumulative
drift over an annual cycle the steady current ef-
fects are significant and may account for ~25% of
the drift. For locations far from shore, the internal
ice stress is normally substantial (e.g., Hunkins,
1975) except over a several-month-long period
during the summer (McPhee, 1979; Hibler and
Tucker, 1979). However, at nearshore locations it
is expected that ice stresses may fluctuate both
in winter and summer.

2) CONSTITUTIVE LAW

For modeling the ice interaction the ice is con-
sidered to be a nonlinear viscous compressible
fluid obeying the constitutive law

oy = 2m(€;,P)€;
+ [Ley P) — nléy Peidy — P82, (4)

where oy; is the two-dimensional stress tensor,
&; the strain rate tensor, P/2 a pressure term (taken
to be a function of the ice thickness characteristics
as discussed later), and ¢ and % nonlinear bulk
and shear viscosities. Using this constitutive law
the force components due to internal ice stress
(calculated from F; = 80;/0x;) are

F, = (8/ox){[n + {Jou/ox + [{ — mldv/dy — P/2}
+ (8/8y)m(Bu/dy + 8v/dx)], (5)

F, = (3/8y){[q + L19v/dy + [ — nlouldx — P/2}
+ (9/0x)[m(dul/dy + dv/ox)]. (6)

For calculations performed here the dependence of
¢ and m on &; and P is normally taken so that the
stress state lies on an elliptical yield curve passing
through the origin (see Fig. 2) with a no-stress
condition applying for pure divergence:

{ = P2A, )
n = {e?, ®)

A =& + &)1 + Ue?) + de2&,
+ 2épé(1 — 1/e2)]12, (9)

where e is the ratio of principal axes of the ellipse.
[A derivation of this equation assuming rigid
plastic flow, together with a normal flow rule, is
given in Hibler (1977).] For very small strain rates
the viscosities in Egs. (7) and (8) become arbitrarily
large. To avoid this they are chosen to be the mini-
mum of the plastic values [Eqs. (7) and (8)] and
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Fig. 2. Relationship between the principal components of
stress (o, and o) for a viscous-plastic rheology employing
an elliptical yield curve with a principal axes ratio e¢ of 2. For
plastic flow, the stress state lies on the solid curve with the loca-
tion dictated by the ratio of the strain rate principal com-
ponents. For example, the stress state for pure shearing de-
formation is located at S, and at C for isotropic compression.
For very small strain rates the stress state moves inside the
yield curve as illustrated by the dotted curve. For comparison,
the stress states for a Newtonian viscous fluid lie on the dashed
line. In all cases negative values of o, and o, represent
compressive stresses and positive values tensile stresses.

some large limiting values dependent on the ice
strength P. When this occurs the stress state
lies on some concentric ellipse inside the yield
surface such as the dashed example in Fig. 2. In
practice these limiting values are chosen to be
large enough to be rarely reached so that they
do not significantly affect the computations. For
the calculations performed here the limiting values
were taken to be

{max = 2.5 X 108 )P, (10)

Nmax = {max/€®, (11)

and in practice are reached only for deformation
rates <10~ day~!.

For comparison, Fig. 2 also shows the stress
state for a Newtonian viscous fluid as used, for
example, by Campbell (1965). For the Newtonian
viscous fluid the constitutive law is given by

oy = 2nle; — 0.56484]. (12)

This simple rheology has been used by a number
of authors (e.g., Kulakovet al., 1979; Doronin, 1970)
and has the advantage of being similar to viscosity
parameterizations used in ocean models. However,
its physical basis for use in sea ice modeling is
questionable.

The choice of the particular plastic constitutive
law specified by Eqs. (4)-(9) does have some
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physical motivation. In particular this choice is
based on the following assumptions, deemed rea-
sonable for sea ice: (i) on a reasonably large-scale
sea ice is on the average isotropic; (ii) the effective
tensile strength is invariably low, regardless of the
kind of deformation; (iii) stresses are relatively inde-
pendent of strain rate magnitude (the plastic hypoth-
esis); and (iv) sea ice has substantial compressive
strength under convergence. Much of the justifica-
tion for the important plastic assumption is based
on physical arguments that the work done in de-
formation is relatively rate independent (e.g., see
Coon, 1979). The elliptical yield curve satisfies
these characteristics and has the additional attrac-
tion of computational simplicity. More complicated
yield curves, such as the tear-drop shape suggested
by Rothrock (1975b), could be included here, if
desired, by allowing a more complex dependence of
m and ¢ on P and ¢;;.

Note that as is normal in compressible fiuids,
the pressure term in (4) is distinguished from the
compression term containing the bulk viscosity
(which also contributes to the trace of the stress
tensor) by the fact that it is independent of strain
rate. This fact, together with the closure scheme
(limiting the viscosities to some maximum value),
forms the essential difference between this viscous-
plastic approach and the conventional elastic-
plastic approach (Goodier and Hodge, 1958).

3) ICE THICKNESS CHARACTERISTICS

Typically, a sea ice cover will contain a variety
of ice thicknesses. Because of this variable thick-
ness feature, appreciable fractions of both thin and
thick ice can be present at the same time in a given
region. For energy exchange purposes, the young
(i.e., thin) portion of the ice cover is particularly
important. Arctic heat transport studies, for ex-
ample (Maykut, 1978), indicate that winter heat
input into the atmosphere from ice in the 0-0.4 m
range can be one to two orders of magnitude larger
than from the thicker perennial ice. In practice,
the fraction of thin ice is affected by both deforma-
tion and thermodynamics. Deformation can create
thin ice by divergence and remove thin ice by
convergence. Growth will diminish the amount of
thin ice by converting it into thicker ice, whereas
melt can create thin ice and/or open water by gradu-
ally reducing the ice thickness.

To approximately parameterize this variable
thickness ice cover, two idealized thickness levels
are used in this model: thick and thin. To keep
track of these two levels, two quantities are calcu-
lated —the mass of ice in any grid cell (in the form
of an equivalent ice thickness /) and the compact-
ness A, which is defined as the fraction of the grid
cell area covered by thick ice. The rest of the cell
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is covered by thin ice which, for computational
convenience, is always taken to be of zero thickness
(i.e., open water). The idea here is to have the
open water approximately represent the combined
fraction of both open water and thin ice up to
some cutoff thickness #,. The remainder of the ice
is distributed arbitrarily. However, since the thin
ice mass is normally small, the mean thickness of
the remaining ‘‘thick’’ ice is approximately equal
to h/A.

For the mean thickness # and compactness A the
following continuity equations are used:

Oh/ot = —8(uh)/dx — A(vh)/dy
+ 5, + diffusion, (13)
0A/8t = —~a(uA)/ldx — d(vA)/dy + S, + diffusion, (14)

where A = 1 and §;, and S, are thermodynamic
terms given by

Sp=f(AA + (1 - A)f(0), (15)
5, [ (FOh)(1 = 4), i F(O) >0,
0, if £(0) <0,

0, if §,>0, (16)
[ (A2h)S, if ~$5,<0,

with f(h) the growth rate of ice of thickness 4,
and 4, a fixed demarcation thickness between thin
and thick ice (0.5 m is used here for the standard
simulation). The diffusion terms, which are small,
have been added for numerical stability. While (13)
is a simple continuity equation for the ice mass
(characterized by the mean thickness k), with
thermodynamic source and sink terms, Eq. (14) is
somewhat more complex. By including the restric-
tion that A < 1, a mechanical sink term for the areal
fraction of ice has been added to a simple continuity
equation for the ice concentration. This sink term
turns on when A =1 (i.e., no open water left)
and under converging conditions removes enough
ice area through ridging to prevent further increase
in A. Although the sink term does not change the
ice mass, it can cause the ‘‘thick’ ice thickness
to increase by allowing s to increase while A
does not. A more formal derivation of the dynamic
portion of Eq. (14) is given by Thorndike et al.
(1975) in which more general mechanical source
and sink terms are also considered.

The effects of growth and decay on the thickness
distribution are represented by the terms S, and
S4. The net ice growth or melt is given by S,.
Within the two-level approximation, S, is given by
the sum of the ice grown on open water plus the
additional growth over the portion of the cell
covered by thick ice. To approximate the growth
and decay rate of this thick ice, its mean growth
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rate is estimated to be that of ice of constant
thickness #/A. For melting conditions the same sum
over open water and thick ice is used. The assump-
tion here is that the heat absorbed by open water
will horizontally mix and melt additional ice until
the mixed layer returns to freezing. Overall, the ice
growth and decay simulated by the S, term qualita-
tively approximates the relative thermodynamic
roles of thin and thick ice. However, due to the
lack of thickness detail, quantitative differences
will occur.

The S, term characterizes the way in which
growth and decay change the relative areal extents
of thin and thick ice. The basic physical notion
embodied by this term is that the areal fraction of
thin ice will decrease rapidly under freezing condi-
tions, and increase slowly under melting conditions.
To simply parameterize the freezing effect, the
fraction of open water (1 — A) is allowed to decay
exponentially with a time constant of 4,/f(0), which
gives the first term in Eq. (16). In practice, /%, is
chosen to be small compared to mean ice thick-
nesses but large enough so that heat fluxes through
hy-thick ice are substantially less than through open
water. For the standard simulation 4y = 0.5 m is
used. Under winter growth conditions this value will
yield decay times of ~5 days. A less obvious
secondary effect, arising from the removal of thin
ice by freezing, is a decrease in the mean thick ice
thickness h/A. This occurs because A increases
faster than A under growth conditions. Such
an effect is desirable since in reality the mean
thickness of the ‘‘thick’ ice becomes smaller as
the thin ice is added.

The second term in (16) accounts for melting.
Its magnitude is derived by assuming that the thick
ice is uniformly distributed between 0 and 2 4/A in
thickness, and all melts at the same rate. There-
fore, over a time Ar the ice of thickness less than
S » At will melt and form open water. By the assump-
tion of uniform distribution this ice covers a frac-
tion of area equal to S, Ar A/2h, which for At
small yields the second term in the equation for
S4. It should be noted that this melting term also
nonphysically creates small amounts of open water
due to ablation of very thick ice in winter. How-
ever, the magnitude of this effect is essentially
negligible.

In practice the freezing term in (16) is fairly
important in the calculations since it affects the
important fraction of thin ice in winter. The melt-
ing term is of less importance and accounts for only
a few percent of the open water formed in summer.
For comparison, simulations are also made in this
paper with only one layer of ice used (i.e., A = 1
identically).

A key component of both the thermodynamic
terms S, and S, is the growth rate function f(4).
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FiG. 3. Typical growth rates of sea ice used for
seasonal simulations.

To calculate f(h) properly a complete heat budget
should be done at each timestep separately over
open water and ice; however, to simplify sensitivity
studies, seasonal growth rates estimated by Thorn-
dike et al. (1975) for the central basin were used
everywhere in the Arctic Ocean. Typical growth
rates versus thickness for winter and summer condi-
tions are shown in Fig. 3. These growth rates were
partially based on heat budget calculations by
Maykut and Untersteiner (1971) which include an
oceanic heat flux from below the mixed layer. This
parameterization supplies a reasonable facsimile
of a complete heat budget at each step, without, of
course, geographical variations or feedback effects
in the boundary layers. However, it is certainly clear
that the inclusion of a proper heat budget in a
simulation model of this type is essential in more
complete studies, and is an important extension to
this work.

It is notable in Eq. (16) that the rate of removal
of thin ice under growth is independent of the thick
ice thickness. The basic idea here is to incorporate
the thin ice into the thick portion of the ice cover
once its growth rate has been substantially reduced.
Besides being physically reasonable, this feature
also aids in the interpretation of the simulation
results. It should be noted that this procedure
differs from the approach used by Parkinson and
Washington (1979) in conjunction with climatologi-
cally averaged input data. There, the heat lost
through a lead is used to accumulate ice onto the side
of the thick ice. Within the formulation of (16)
the net effect of the Parkinson and Washington
parameterization is to change 4, to h/A, which will
be generally much larger than h,. Hence, under
growth, thin ice disappears more slowly than in
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F1G. 4. Simulated and actual ice growth using different thin
ice parameterizations. Initial conditions were 20% open water
and 80% coverage by 3 m thick ice. In the actual ice growth
case the thin ice reaches a 0.5 m thickness in slightly less than
9 days.

reality. While such a feature may well be desirable
for climatologically averaged forcing fields, it makes
interpretation of the effects of deformation on ice
growth rather difficult.

The utility of Eqs. (15) and (16) and the im-
portance of the A, parameter are perhaps best ii-
lustrated by results from a simple thermodynamic
experiment, shown in Fig. 4. Here, mean simulated
ice thicknesses versus time are compared to the
actual thickness. In all cases January growth rates
were used together with initial conditions of 20%
open water and 80% of 3 m thick ice. As can be
seen, the choice of &, = 0.5, which is used in the
standard simulation, is reasonable. With larger
values of h,, on the other hand, the thin ice
growth tends to be overestimated.

With respect to the diffusion, small harmonic
and biharmonic diffusion terms have been added for
stabilization over long-term integrations, e.g., (dif-
fusion), = D,V?h + D,V*h. Of these two terms the
biharmonic diffusion is most important, and is taken
to be four times as large as the harmonic diffusion
at the Nyquist wavenumber. Although in practice
there may be some actual diffusion in the sea ice
due to random effects, the diffusion used here is
viewed primarily as a necessary numerical artifact
to suppress smaller scales in order to avoid aliasing.
The diffusion is dependent on the grid size and is
smaller for finer grids.

4) THICKNESS-DYNAMIC COUPLING

To couple the ice strength to the ice thickness
characteristics the ice pressure P/2 (and hence
indirectly the viscosities) is taken to be a function
of compactness and thickness according to
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P = P*h exp[-C(1 — A)), a7

where P* and C are fixed empirical constants and
h is in meters. This formulation makes the strength
strongly dependent on the amount of thin ice (char-
acterized by the compactness A), while also allow-
ing the ice to strengthen as it becomes thicker.
Within the framework of the compressible fluid
approach used here, this relation effectively forms
an equation of state for the pressure, which is neces-
sary to complete the system of equations. In this
equation of state no temperature or salinity de-
pendence is included since such variables are felt to
have only a second-order effect on the strength of
the ice interaction.

While directly intuitive, the strength expression
in (17) can also be qualitatively related to the
strength assumptions used in the multilevel thick-
ness distribution of Thorndike et al. (1975). There,
following a suggestion by Rothrock (1975b), the
strength of the ice is explicitly related to the work
done by ridging. Under converging conditions, the
closure of both thin and thick ice (and also open
water) occurs simultaneously. The relative amount
of thin ice being deformed, however, is weighted
by the area of thin ice. Hence for small amounts
of thin ice, more thick ice is deformed and thus the
ice has a high strength which is dependent on the
thick ice characteristics. For a large amount of thin
ice, on the other hand, mostly thin ice is deformed
which yields low strength. These features are repre-
sented in Eq. (17) by the exponential dependence
on (1-A) which characterizes the amount of thin
ice being ridged, and the proportionality to & which
approximates the strength of thick ice undergoing
deformation. The assumption in the # dependence
is that the distribution of thick ice is reasonably
well described by its mean (h/A). However, while
qualitatively correct, this two-level ice thickness
scheme does not allow the particular thickness of
ice involved in ridging to be determined.

¢. Numerical scheme

The simultaneous equations (1), (13), (14) and (17)
are numerically solved as an initial-value problem
using finite-difference techniques. A staggered,
spatial grid configuration similar to that employed
in ocean models (Bryan, 1969) is used (Fig. 5).
This configuration allows the continuity equations
to be cast in mass-conserving form and in energy-
conserving form for the incompressible components
of the velocity field. Also, the viscous terms can
be formulated in energy-conserving form in the
momentum equations. For completeness the finite-
difference code for the momentum equations
(together with the relaxation scheme) and the con-
tinuity equations is outlined in Appendix A.
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For solution of the momentum equations [Eq.
(1] a semi-implicit predictor corrector procedure
(Ames, 1969) is used to center the nonlinear terms.
Under this procedure two relaxation solutions are
required at each timestep, one to center the non-
linear terms and one to advance to the next step. In
each case point relaxation techniques are used
to solve the linearized implicit equations. The
acceleration term is included by a backward time
step, although its contribution is effectively negli-
gible for timesteps longer than several hours (see
Appendix B). This backward timestep does over-
damp the inertial oscillations, but at timesteps used
here (1 day) such terms are not considered im-
portant. Also, the Coriolis terms can easily be made
neutrally stable by considering them separately if
desired.

The ice thickness equations (13) and (14) are
integrated explicitly, with the advection terms inte-
grated by a modified Euler step (Kurihara, 1965)—
which is second-order accurate in time—and the
diffusion and thermodynamic terms by a forward
Euler step. The diffusion terms render the system
linearly stable in addition to preventing the buildup
of nonlinear instabilities. In practice these diffusive
terms make only small contributions, and in the
standard simulation discussed next the diffusive
fluxes were less than 3% of the advective fluxes
on the average.

This time-marching procedure for the coupled
equations can be conveniently illustrated using
the simplified one-dimensional equations:

ouldt = (0/6x)[(n(u, P)ou/dx]

-~ D(u)u — 0P/0x — u(0u/dx), (18)
0h/dot = —8(uh)/dx + f(h) — Dh, (19
P = P(h), 20)

where, for illustrative purposes, the diffusion term
has been replaced by a simple drag term. In time,
h is considered to be defined at V2 and u at #%. To
advance 1 requires two steps (denoting spatial
differences by &, and time location by super-
scripts):

ui+1/2 — ”i + 1/2At{8x[,n(ui’Pi+1/2)81ui+112]

— D(ui)ui+l/2 —_ S‘I'PH—I/Z — uisrui+1/2}’ (21)
ui+1 — ui + At{Sr[n(ui+l/2,Pi+l/2)5l‘ui+1]
_— D(ui+1/2)ui+l - 8$Pi+1/2 _ ui+1/281ui+l}’ (22)

where both equations are solved for the u’s by
relaxation. Note that Eq. (21) provides an estimate
of ui*¥? for use in the nonlinear terms in the
basic timestep [Eq. (22)]. Once the velocity has been
advanced to time #i*! the thickness is then advanced
by the two-step procedure, i.e.,
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FiG. 5. Spatial arrangement of variables used in
numerical calculations.

hi+3/2* —_ hi+l/2 — Ats_z-(ui+l,hi+l/2), (23)
hi+3/2 — hi+ll2 — At{sr[ui+l(hi+l/2 + hi+3/2*)/2]
— Dhi+l/2 +f(hi+1/2)}. (24)

The first equation in this modified Euler procedure
provides a provisional value in order to approxi-
mately center the advection term in the second
equation. Note that since 4 and u are staggered
in time the coupled system is effectively being inte-
grated by the efficient forward—-backward scheme
(Mesinger and Arakawa, 1976).

The essential stability requirement on the sys-
tem of equations is a Courant-Friedrichs-Lewy
condition for the advection terms: At < Ax[2(u?
+ v?)]7¥2, In addition, in order to insure against any
nonlinear instabilities, the viscosity parameter is
never allowed to drop below ¢ = 4.0 x 108 kg s~
This value is several orders of magnitude below
typical strong ice interaction values and effectively
yields free drift results. There is also, in principle,
the possibility of a gravity wave due to the coupling
of the pressure with acceleration. However, a local
stability analysis indicates that the large ice viscosi-
ties, related to the pressure, keep the system stable
for backward timesteps of any magnitude.

Although not a formal stability requirement, it
is also wise to choose timesteps small compared
to the scale of variability of the forcing. This is
because the nonlinear viscosity takes a few time
steps to adjust to changes in the forcing field
due to the semi-implicit treatment of the nonlinear
terms. Results for a constant-forcing field, reported
in Appendix B, show this response time to be about
four or five timesteps if large timestep magnitudes
{~1 day) are used in the integration. Results in
Appendix B also verify that the momentum equi-
librium state for fixed forcing is independent of
the timestep magnitude used in the integration.

3. Simulation results

To examine the characteristics and usefulness of
this model a number of numerical experiments were
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carried out. The approach in these experiments was
to use observed time-varying wind data to drive the
model over time periods long enough to obtain
seasonally varying equilibrium results. (Certain
more idealized test simulations are discussed in Ap-
pendices B and C.) For the primary experiment the
model was applied to the Arctic Basin and integrated
for eight years (using observed time-varying wind
data) at 1-day timesteps and a resolution of 125 km
in order to obtain results essentially independent of
initial conditions. The results are compared with
various observed data, including ice drift, geographi-
cal and temporal ice thickness variations, ice ridge
statistics, ice concentration charts and mass balance
statistics. A rectangular grid (Fig. 6), based on a
stereographic projection, was used in the simula-
tions. The Coriolis parameter was taken to be con-
stant over the whole grid. This f-plane approxima-
tion was felt to be adequate for this study because
of the slow variation of the Coriolis parameter in
the polar regions and has been commonly used in
studies of Arctic ice drift (e.g., Rothrock, 1975a).
The numbered grid cells and circled grid points de-
note locations used for time series results. To ob-
tain a natural outflow condition the ice thickness
(for estimating strength) was taken to be zero in
the shaded grid cells between Spitsbergen and
Greenland. Average thickness and compactness
values based on neighboring grid cell values, how-
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ever, were used in the continuity equations to pre-
serve second-order accuracy.

For input wind data to drive the simulations,
observed surface pressure data over the time
period May 1962-May 1963 were used to con-
struct 8-day averaged geostrophic winds. The
wind data were then modified in the May portion
of the record to create a one-year periodic result.
(This particular time interval was used because of
the simultaneous presence of one U.S.S.R. and two
U.S. drifting ice stations, which provided observed
ice velocity and deformation rate information.)
The pressure data were obtained from the National
Center for Atmospheric Research and were re-
ported every other 5° of latitude and longitude.
These data were converted to a 16 by 16, 250 km
square mesh grid (containing the Arctic Basin grid
in Fig. 6) using the cubic spline gridding procedure
discussed by Davis and Kontis (1970). The data
were then smoothed and differentiated using dis-
crete Fourier transforms and interpolations made
to the finer mesh Arctic Basin grid. For the calcula-
tion of geostrophic currents, mean dynamic topog-
raphy values reported by Coachman and Aagaard
(1974) were used. Thermodynamic growth rates (no
geographical variation) as a function of thickness
and time were taken from Thorndike et al. (1975).
Table 1 gives the numerical parameters used in this
standard simulation.

120°

f 90°

180°

i

/8

7

Canada 1

Greenland 10

60°

Fic. 6. Fixed square-mesh grid used for numerical calculations. The num-
bered grid cells and circled grid points denote locations of time series plots of

ice characteristics.
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It should be noted that besides the wind and water
drag coefficients the key constants are P*, e, hy
and C. The constants P* and C relate the ice
strength to the ice thickness and compactness {Eq.
(17)], e is the principal axes ratio of the plastic yield
curve [Eqgs. (8) and (9)], and A, determines the rate
of decay of the fraction of open water due to
growth [Eq. (16)]. Viscous studies (Hibler, 1974)
suggest i to be smaller than ¢, so e = 2 (which
yields a {/m ratio of 4) is reasonable. C is determined
so that 10% open water reduces the strength sub-
stantially. k, was chosen to give a typical winter
time scale of about 5 days for the removal of open
water through growth (see Fig. 4). The wind and
water drag coefficients and turning angles were
taken from McPhee (1979). P* is the basic, free
empirical parameter and was adjusted to give rea-
sonable agreement between the predicted and ob-
served net drift of the drifting stations over this
year-long period. The P* value found to be useful in
the standard simulation is slightly larger than, al-
though of the same order of magnitude as, values
estimated by Thorndike er al. (1975). Sensitivity
of the simulation results to these parameters is
discussed later in this section. Initial conditions in
all cases were taken to be a constant ice thickness
of 3.2967 m (=3.0 x 10° kg m~%p,) and a compact-
ness of 1.0 on Julian Day 1.

a. Equilibrium time scales

After several years of integration the model ap-
proaches a cyclic equilibrium, with thickness and
velocity characteristics taking on similar values on
corresponding days of successive years. Fig. 7
shows the basin-averaged mean ice thickness on 1
January of successive years. Also shown in this
figure are the averaged annual net growth, outflow
and net growth over open water. Initially the net
ice growth is substantially less than the flow out of
the basin. However, as the ice becomes thinner
the growth increases until after eight years it al-
most balances the outflow. The figure also shows
that due to the initially thick ice, the growth early
in the simulation is dominated by the ice formation
over open water. As the ice becomes thinner,
however, the ice growth over ice-covered portions
of the basin becomes more significant. At the end

TABLE 1. Numerical parameters used in standard simulation.

C, =0.0012 Ax = Ay = 125 km

Cw = 0.0055 At = 1lday

Cc =200 tmax = (P/4) x 10® kg s~

e =2 Nmax = {max/e®

f =146 x 1074 s} pr =091 x 10° kg m™3

hy =05m ¢ =0=25°

pa = 1.3 kgm™3 D, =0.004Ax = 5.0 x 10? m? s™!
P¥ =5.0x 103 Nm™! D, = Ax*D,=7.81x 10?2 m*s?
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F1G. 7. Average basin ice thickness versus time for the standard
simulation (a), and the annual average ice outflow, net growth and
net growth over open water (b).

of the eighth year the system is very close to
equilibrium, with a mean thickness decrease of less
than 3 cm from the previous year. Fitting an ex-
ponential to the thickness change versus time shows
the time scale for thickness equilibrium to be ~2.5
years. Such a time scale is reasonable since the
total equilibrium is basically thermodynamic in na-
ture, with the slow growth effects gradually catching
up to the outflow.

The time scale for the change of velocity due to ice
buildup (and hence strengthening) of nearshore ice is
somewhat faster. For example, Fig. 8 shows the x
and y ice velocity components at grid cell 2 along
the Canadian Archipelago where the ice buildup is
substantial. After ocne year the velocity has changed
substantially and the general nature of the differ-
ence of the equilibrium state from the initial condi-
tions can be determined. In Fig. 8 the initial
change in velocity is due to the ice buildup, with
the slow decay reflecting the overall slow de-
crease in basin ice thickness. Simple tests with
constant wind fields (an example is given in Ap-
pendix C) indicate that this buildup of ice and the
subsequent velocity change can in fact take place in
only a few weeks. Both these time scales, however,
are in contrast to the time scale for the ice velocity
to come to equilibrium with the wind. This time
scale, examined in Appendix B, is of the order of
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cessive years in the standard simulation.

hours. Consequently, deformation of the ice pack
due to synoptic winds can effectively follow a
moving weather system across the basin.

b. Ice velocity characteristics

Fig. 9 shows the average annual ice velocity
field for the eighth year of the simulation. This
field exhibits many of the characteristics of the
average annual ice drift which is outlined, follow-
ing Gordienko (1958), in Fig. 10. In particular
there is a clockwise Beaufort gyre and a transpolar
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drift stream extending from the Siberian coast to
the Greenland-Spitsbergen passage. It is notable
that the gyre velocities are substantial even near
shore and the ice velocities near the Pole are
oriented relatively parallel to the coast. These two
particular features can also be produced by assuming
the ice to be incompressible (Rothrock, 1975a).
However, they are reproduced poorly by free drift
estimates (e.g., Felzenbaum, 1958) and Newtonian
viscous models (e.g., Campbell, 1965).

It is important to remember that the average circu-
lation, shown in Fig. 9, represents a sum of ice
velocities using a complete nonlinear simulation
model operating on time-varying wind fields. This
can be contrasted to the average circulation esti-
mated by Felzenbaum (1958), Campbell (1965) and
Rothrock (1975a) which are obtained using dynami-
cal calculations only, based on a mean annual
wind field. Simulated rates averaged over a few
days or weeks will usually be larger than the mean
annual case and can differ totally in drift pattern.
For example, the average January velocity field
shown in Fig. 11 has a somewhat similar pattern to
the mean annual drift but substantially larger ve-
locities.

Of particular interest in the January velocity field
is the strong shearing motion off the Alaskan coast,
where the velocity component tangential to the
shore is larger near shore than further out due to
the plastic rheology allowing a ‘‘slip plane’’ of low
viscosity to form. This type of behavior has been

Fi1G6. 9. Average annual ice velocity field for the standard simulation. A
velocity vector one grid space long represents 0.02 m s™!.
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documented observationally using remote sens-
ing imagery by Hibler ez al. (1974b) and Reimnitz
et al. (1978).

A more detailed analysis of nearshore ice char-
acteristics more graphically illustrates the formation

180
AAewNwN\

of such a shear zone off the north coast of Alaska.
In Fig. 12 are shown bulk viscosity values for three
grid cells progressively further away from the coast
together with the nearshore compressive stress
(ozz) and ice velocity. These time series show

120.

FIG. 11. Average January ice velocity field for the standard simulation. A
velocity vector one grid space long represents 0.02 m s™.
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The

bulk viscosities are taken from grid cells progressively further from the

coast with the onshore compressive stress and the ice velocities taken from
the grid cell and grid point nearest the coast (i.e., grid cell 4 and the circled
grid point on cell 4). ‘
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F1G. 13. Observed ice motion pattern over a 1-day interval during shear activity in the nearshore region. The observations were
made using LANDSAT imagery and the dashed line marks the boundary between the shore-fast ice and the pack ice.

simulated nearshore deformation events similar to
those observed in LANDSAT studies. For example,
Fig. 13 shows observed ice motion off Pt. Barrow
during a shearing event (Hibler et al., 1974b). The
basic characteristic is that as the ice moves out,
the nearshore region develops a low viscosity layer,
so that the pack can slip along the shear zone in a
relatively free manner. This type of behavior is
particularly apparent in the spring in the simulation
when a large deformation event took place. As is
apparent from the figure the reduction of the near-
shore viscosity usually coincides with rapid ice
motion parallel to the coast (westward) and a de-
crease in the onshore stress. Under strong onshore
stress conditions, on the other hand, relatively
little motion takes place.

For a comparison of the simulated drift in the
central basin with observations, the simulated
velocities of two U.S. and one U.S.S.R. drifting ice
stations were estimated by taking the calculated
velocity at the grid point nearest the station loca-
tion on any given day. Fig. 14 shows simulated
and observed 11-day smoothed x and y velocity
components for one of these stations (ice station
Arlis). For an estimate of the net ice station dis-
placement, the observed and simulated velocities
of all three stations were summed from day 140
(1962) to day 109 (1963). The results are shown in
Fig. 15. These drift comparisons show the simu-
lated velocities and cumulative drift to be in good
agreement with the observed values, especially

considering that errors due to inadequate current
data and poorly resolved wind: fields can be sub-
stantial.

Drift results far from shore, similar to those shown
in Figs. 14 and 15, can also be obtained using
simpler linear models without ice thickness effects
(i.e., Hibler and Tucker, 1979). However, in such
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F1G. 14. Simulated (dashed) and observed (solid) 11-day averaged
drift rates of Ice Island Arlis.
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mechanistic models it is necessary to introduce
empirical seasonally varying strength parameters.
The important point here is that the results in
Figs. 14 and 15 are obtained using a physically
reasonable simulation model with only two free
strength constants, which, once chosen, do not
change in time. The seasonal variations of the ice
strength (as well as more rapid variations, say in
the shear zone) are thus part of the simulated
results and do not have to be inserted in an ad
hoc manner.

c. Ice thickness characteristics

While the ice velocity characteristics can be ob-
tained using shorter simulations, the ice thickness
characteristics are a unique feature of a simulation
carried out to seasonal equilibrium. Examination of
these ice thickness results provides, in many ways,
a more discriminating test of the model. One of
the most notable results of this model is the simu-
lated geographical variation in thickness due to the
ice dynamics. This variation is illustrated in Fig. 16
which shows the average ice thickness contours for
April (a month when the pack ice is close to its maxi-
mum thickness). Although the thicknesses very
near shore may be a bit large, the general form
of the contours in the western Arctic Basin is
well documented; it also compares favorably with
ridging observations. In Fig. 17, for example, are
shown values and contours of ridging intensity (a
parameter approximately proportional to the volume
of deformed ice) taken from laser profilometer data
statistics (Hibler ef al., 1974a). These contours show
heavy ridging off the Canadian Archipelago, which

rapidly decreases as one approaches the Pole. Also,
recent British submarine sonar measurements (Wad-
hams, 1979) have shown ice over 6 m thick very
near the north coast of Greenland, with thicknesses
decreasing to less than 4 m at the Pole.

Probably the best data for estimation of basin-
wide ice thickness characteristics are under-ice sub-
marine sonar profiles. Although there have been
considerable basin-wide data taken, relatively few
have been analyzed methodically. The primary
exception to this [besides British submarine data
near the Pole (Williams et al., 1975; Wadhams,
1979] are submarine data taken from the 1960 winter
cruise of the Sargo and the 1960 and 1962 summer
cruises of the Seadragon, portions of which were
reported on by LeSchack er al. (1971). Results
from selected 8 km sections of these data are
shown in Fig. 18 (LeSchack, private communica-
tion). These values were obtained by averaging the
thickness of the ice-covered portions of submarine
tracks of at least three 8 km sections within the
same 300 km square region.

Comparison of Figs. 16 and 17 show the simulated
geographical variations in ice thickness to be in
good agreement with the submarine sonar estimates.
The general pattern in both cases, is very thick ice
off the Canadian Archipelago with thinner ice off
the North Slope and Siberian coast. The primary
differences are in the magnitudes of the thicknesses,
with the simulated values being higher than ob-
servations near Greenland, and smaller near the
North Slope and Siberian coast. '

It is notable that both these observed and simu-
lated thickness contours are in contrast to seasonal
simulated results by Parkinson and Washington
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F1G. 16. Simulated average April ice thickness contours. Thicknesses >4 m are
shaded by diagonal lines and thicknesses <2 m are denoted by dots.

(1979), who, to a limited degree, also include trans-
port effects. In particular for the Arctic Basin,
Parkinson and Washington (1979) obtain results
differing very little from thermodynamic considera-
tions alone (see, e.g., Washington et al., 1976),
namely, generally thicker ice near the Pole with
thinner ice near the coasts, including the Canadian
Archipelago.

With respect {0 compactness, except for a few
riearshore regions which may have up to 10% open
water for short periods of time, the simulated fall,
winter and spring compactnesses are greater than
95%. This is in general agreement with submarine
observations in 1960 indicating less than 1.5% open
water in the central basin in winter (Wittman
and Schule, 1966). However, in summer the com-
pactness decreases, especially in the North Slope
and Siberian coast regions. In Fig. 19 are shown
the simulated average August compactness con-
tours, together with the average August thickness
contours.

These August concentration values are similar
to observed ice conditions for relatively ice-free
summers on the North Slope. In a historical study of
nearshore ice characteristics off the Alaskan coast,
Barnett (1979) found 1962 to be a relatively ice-
free summer. Ice charts for the summers of 1972
and 1973, which were also ‘‘good’’ summers for
navigation, are shown in Fig. 20. The 1972 chart,
representing ice conditions on 14 August, was com-

piled by the Navy Fleet Weather Facility and covers
only the North Slope and the Siberian coast. The
1973 chart, representing ice conditions at the end
of August, was compiled by the British Meteorologi-
cal Office at Bracknell and is more complete.
Both charts make extensive use of satellite imagery,

120°E

5

;9\

P7.4
27.6

150°W

30°E
327
124

4238
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Fic. 17. Ridging intensity (a parameter approximately propor-
tional to the volume of deformed ice) observations and contours
obtained from laser profilometer measurements taken during
February 1973.
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Fi1G. 18. Contours (m) of observed ice thickness values obtained from submarine sonar data.

including passive microwave cloud-free imagery.
(A Bracknell chart is available for 1962 but is
based on spotty visual observations and shows little
more than an annual mean value similar to the re-
sults in Fig. 20.) Comparison of the two charts in
Fig. 20 yields some idea of the expected variation
of ice edge conditions during ‘‘good’’ summers.
Since the growth rates in the simulation are con-
stant over the basin, the agreement between simu-
lated and observed ice concentration suggests that
the nearshore ice conditions in summer are domi-
nated by wind conditions. Such a conclusion is in
agreement with the results of an empirical study by
Wendler and Jayaweera (1976) who showed that
good and bad ice conditions off Alaska correlate

well with the 750 mb winds. A noticeable excep-
tion, however, is around the Chukchi Sea region.
In this region the simulated ice concentrations are
much higher than observed. It is likely that this dis-
agreement stems from inadequate thermodynamics
in the model [due probably to neglecting northward
flowing warm water from the Pacific (R. Paquette,
private communication)]. Another difference be-
tween simulated and observed results is the lack of
totally ice-free regions very near shore. However,
it is probable that this effect is partially due to inade-
quate spatial resolution in the model. It is also
likely that there is insufficient melting due, among
other reasons, to neglecting the albedo changes
caused by the open water.
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FiG. 19. Average August thickness (a) and compactness (b) contours
taken from the standard simulation.

An interesting feature of the simulated August stantial evidence of such a low compactness region
compactness is a large low compactness region far during this specific summer. In particular, Dunbar
from shore in the vicinity of 80°N, 180°W. Whether and Wittman (1963) report that submarine observa-
or not this is a regular annual feature of the ice tions in late July 1962 between ice stations T3 and
concentration is not known. However, there is sub- Arlis (which were in this region) show ice con-
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F1G. 20. Observed ice concentration charts for 14 August 1972
(a) and the end of August 1973 (b). The dotted line denotes the
edge of the ice-free region whereas the solid line denotes the
demarcation between 75% areal ice coverage in (a) and 70% in (b).
Chart (a) was taken from the Suitland Fleet weather compila-
tion (no contours are given for Greenland or the Eastern Basin
region) and chart (b) from the Meteorological Office, Bracknell,
England.

centration of less than 70%. Furthermore, the
triangle formed by these two ice stations and NP10
(see Fig. 15), which in August happens to be in the
low compactness region, shows a large area increase
between the middle of July and the middie of August.
Consequently it seems likely that this simulated fea-
ture is realistic, but may be an anomaly of this
particular summer.

OF PHYSICAL OCEANOGRAPHY

VOLUME 9

Superimposed on the seasonal variation in ice
thickness characteristics are fluctuations, on the
scale of days, which are especially pronounced in
the nearshore regions. This effect is illustrated in
Fig. 21, which shows ice thickness and compact-
ness variations at three nearshore grid cells and three
offshore cells. Fluctuations in compactness are
especially pronounced in the North Slope region.
Thickness changes, on the other hand, are more
pronounced in the Canadian Archipelago region.
Further offshore these fluctuations are reduced al-
though they are still apparent in the ice thickness
records.

Fig. 21 also shows the seasonal ice thickness
variation to be more pronounced in the gyre region
than in the transpolar drift area. For example,
summer-winter thickness variations are ~1 m in
the Beaufort Sea and ~0.5 m nearer the Pole. In a
calculation based on a moving Lagrangian ice
parcel (defined by the same three drifting stations
shown in Fig. 15) Thorndike et al. (1975) found a
similar ice thickness change as simulated in the
Beaufort Sea the first year, and a reduced change
the second year as the parcel moved toward Spits-
bergen. Their results are in general agreement with
this simulation.

As a subsidiary effect to the seasonal variation
in thickness characteristics, ice strength substan-
tially weakens in summer in most parts of the Arctic
Basin. This effect, for two offshore locations, is
illustrated by the viscosity time series in Fig. 22.
Of particular interest is the decrease in viscosity in
the Beaufort Sea in summer, to effectively negligible
values which yield free drift conditions. This is
consistent with a recent study of summer ice drift
based on the 1975-76 AIDJEX data in the Beaufort
Sea (McPhee, 1978). McPhee found that the ice
drift over approximately the time period Julian Days
200-240 could be well explained by free drift
calculations (no internal ice stress).

d. Mass balance characteristics

Although the velocity and thickness characteris-
tics are important for ascertaining the overall
validity of this sea ice model, of particular relevance
to climatic studies are the mass balance and heat flux
characteristics. For a comparison to observations,
the average mass balance statistics are calculated
and compared in Table 2 with results from an ob-
servational study by Koerner (1973). Also, to better
illustrate the effects of dynamics on the mass
balance, the ice thickness portion alone of the model
(without dynamics) is integrated for 20 years and
mass balance results tabulated.

In considering Koerner’s estimates it should be
cautioned that they are based primarily on about
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one year of ground observations taken during the
British Transpolar Arctic Expedition (21 February
1968 to 27 May 1969: Barrow to Spitsbergen by
dogsled); in addition to representing 6nly one year
they are also heavily biased toward the western
portion of the Arctic Basin.

Overall, Table 2 suggests that the model is repro-
ducing the basic mass balance characteristics rea-
sonably well, especially since Koerner’s values are
only estimates. [Aagaard and Greismann (1975), for
example, estimate the average outflow rate to be about
0.1 Sv, which is much closer to the model results.]
The simulated mean thickness magnitude, which is
~1 m less than Koerner’s estimate, exhibits prob-
ably the greatest deviation from observation. The
ice production (total amount of ice formed through
freezing) and net growth, on the other hand, are
fairly close to estimated values.

A salient characteristic of the ice growth, illus-
trated by the table, is the large magnitude of the
open water ice production, which in the standard
simulation is 34% of the total. This is occurring
even though the average percent of open water is

less than 3%. Part of this effect is due simply to
the fact that the growth rate for open water and
thin ice are orders of magnitude larger than thick
ice. For example, in January open water is growing
at about 12 cm day™!, while 2 m thick ice grows at
0.31 cm day~!'. However, a second effect is that the
open water will freeze in early fall while thick ice
is still melting. Basically the idea is that the thick
ice reduces heat loss to the relatively warm at-
mosphere so that heat from below the mixed layer
tends to warm up the mixed layer and melt ice.
To illustrate this effect, Fig. 23 shows time series
of the basin-averaged open water growth rate and
total growth rate. Note the sharp rise in the open
water growth in the fall, which is also reflected in the
total growth. This effect is also present to a much
lesser extent in the dynamics-free case, where
the ice melting creates a small amount of open
water in the summer (~5%). This fall peak in the
growth, however, does not have a pronounced ef-
fect on the mean thickness, partially because the
mean thickness is constantly being affected by
outflow.

TABLE 2. Basin-averaged annual mass balance statistics.

~ Mean max- Seasonal
Total ice Average Net imum ice ice thickness
production Open water percent of growth thickness change
Outfiow (m) ice production open water (m) (m) (m)
Standard 3220 km3* 0.891 0.299 m 2.84 0.422 2.659 0.524
simulation (34% of total)
No dynamics 0.0 0.350 ‘ 0.54 0.0 3.880 0.350
simulation
Koerner's 5580 km?* ~1.1 ~40% of total —_ ~0.5 ~3.7 ~0.6
estimates for ice <1.0 m thick

* 3154 km?® year~! = 0.1 Sverdrup.
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While having some seasonal variation, the out-
flow time series (also shown in Fig. 23) responds
primarily to wind fields, as illustrated by its fluctu-
ating character. It is also possible for inflow to occur
into the basin under certain conditions, although
such effects were relatively small for this simula-
tion. Such a fluctuating outflow is commensurate
with observations by Vinje (1976) which indicate
that the instantaneous outflow rate may vary from ef-
fectively zero to more than twice the mean value.

The thickness time series in Fig. 23 graphically
illustrates the marked reduction in the mean ice
thickness due to including dynamics in the simula-
tion. The rather small thickness simulated by the
coupled model is probably partially due to insuffi-
cient detail in the ice thickness distribution. In
particular, while the two-level thickness distribution
used here keeps approximate track of thin ice up
to ~0.5 m, it does not provide much detail on the
thicker ice. Consequently, due to the nonlinear na-
ture of the ice growth rates, the mean growth rate
of the thick ice could well be larger than the growth
rate of level ice having a single mean thickness.
This argument is made more compelling by the
skewed nature of observed ice thickness distribu-
tion (see, e.g., Wadhams, 1979). It is also possible
that growth rates are too low due to inadequate
amounts of open water being simulated. This
could be partially due, for example, to not allowing
open water to form under shearing conditions.

In addition to the basin-averaged values, the geo-
graphical variations of the ice production are also
of some interest. The simulation results show the
ice production to be highly concentrated at the
boundaries of the basin where the greatest amount
of open water and thin ice is being created due to
advection. In regions of ice convergence, on the
other hand, thick ice is created which tends to ablate
even in winter, causing a net negative growth. These
effects are illustrated in Fig. 24, a contour map of
the annual net growth of ice in meters. At loca-
tions of high offshore advection, say off the Ca-
nadian North Slope, the net growth exceeds 2 m.
It would seem reasonable to infer that such intensi-
fied localized growth must have some effect on the
Arctic climate and Arctic Ocean circulation.

e. Sensitivity of simulation results to parameteri-
zation

Of the parameters in this model, three (P*,e,C)
are strength parameters and one (h,) characterizes
thermodynamic heat loss through thin ice. While
changes in these parameters have been found to
cause some quantitative modifications in the simula-
tion results, they do not drastically alter the
general characteristics described above. To
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identify the contribution of the different parameters
a series of two-year simulations were carried out.
In each simulation one constant was varied from the
standard value. Although not really equilibrium
results, these simulations allow the trend of the ef-
fects of the parameters on ice velocity and relative
ice thickness to be estimated.

For a methodical examination of the effect of the
shape and size of the yield curve on the results
(characterized by P* and e), the major and minor
axes of the elliptical yield curve were doubled in
length independently. The larger, thinner ellipse has
an increased compressive stress P, (stress occurring
under pure convergent deformation —location C in
Fig. 2) with smaller changes in the shear stress.

- The fatter ellipse is just the opposite. In terms of

the nonlinear viscosities, increasing the shear-to-
compressive-stress ratio is equivalent to increasing
the shear viscosity m relative to ¢, the bulk viscosity.
For an estimate of the effect of open water on
the strength (characterized by the parameter C) ex-
periments were carried out with C doubled.

For a sensitivity study of the h, parameter,
simulations were carried out with no open water
(A =1 always). The A = 1 case also effectively
represents a simplified version of the model in
which only one continuity equation is required, and
is comparable to the approach used by Bryan
et al. (1975) and Manabe et al. (1979) to handle
the ice thickness although the dynamical interac-
tion is different.

The salient results of the two-year parameter
study simulations are given in Table 3 which con-
tains selected heat balance, ice thickness and veloc-
ity characteristics. In this table numerical values
are given for the second year of the standard case,
with percentages (relative to the standard case)
given for the sensitivity experiments. The net
drift in the table refers to the average simulated
drift from day 140 to day 109 of the three drifting
ice stations, and the rms velocity refers to an aver-
age over the whole grid on day 17. The other
parameters are the same as used before or self-
explanatory.

The results illustrated by this table can be sum-
marized by the following observations.

1) Increasing the shear strength tends to stiffen
the flow in the basin, causing a consequent reduc-
tion of outflow and ice drift. However, it does not
appreciably affect the relative geographical ice
thickness variations.

2) Increasing the compressive strength sub-
stantially reduces relative spatial ice thickness
variations. Outflow values and drift magnitude,
however, change only mildly.

3) Changing the open water strength constant C
has only a minimal effect on all characteristics in
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the table. A large C value does, however, cause a
greater decrease in ice strength in summer.

4) Removing the open water decreases ice pro-
duction and mean ice thickness but has little effect
on the relative spatial thickness variation and
the drift.

In general, these experiments and observations
indicate that the yield curve controls the relative
geographical ice thickness variations and outflow,
while the open water parameterization (h,) primarily
affects the mean thickness and growth characteris-
tics. Rather surprising, however, is the relatively
small effect of the open water parameterization
(he) on the growth and mean thickness. For example,
removing the open water entirely only reduces the
growth and mean thickness by 10-20%.

To more carefully verify this relatively small
effect of the open water parameterization, the
simulation with no open water was continued to
eight years. Table 4 gives a comparison between
the characteristics of this no open water simula-
tion and the standard experiment. The essential
effect of removing open water is to reduce the thick-
nesses and outflow by ~20%. Of some interest is
the fact that the ice production is reduced only
5%, reflecting the fact that the increased growth

rates of the thinner ice compensate for the absence
of open water. It should also be noted that sensi-
tivity experiments similar to those in Table 4 were
done with h, doubled (i.e., h, = 1.0). These experi-
ments yielded about a 15% increase in outflow and a
20% increase in thickness. Overall, these sensitivity
results suggest that inadequacies in the thermo-
dynamic treatment of thin ice in this model are not
causing major changes in the equilibrium thickness
characteristics.

4, Concluding remarks

By integrating the sea ice model developed here
to a seasonal equilibrium, it has been possible to
simulate many of the effects of dynamics on the
equilibrium thickness and heat flux characteristics
of the Arctic ice cover. Probably the most notice-
able effect was a buildup of ice along the Canadian
Archipelago in conjunction with a thinning of ice
along the North Slope and Siberian coast. As the
simulation proceeds in time the buildup strengthens
the ice along the Archipelago while the thinning
weakens the ice off the other coasts. The result-
ing strength imbalance eventually counteracts the
external forcing thus creating seasonal equilibrium
ice thickness and velocity characteristics. A strong
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point of the model is that the thickness contours at
which this strength imbalance occurs agree well
with observed geographical variations in thickness.

In addition to creating thickness differences the
ice transport also causes substantial amounts of
open water to form in regions of offshore advection.
These effects are particularly pronounced in
summer (when open water is not removed by freez-
ing) and result in a region of low compactness off
the North Slope and Siberian coast. Further from
shore smaller, but still significant, amounts (~10%)
of open water also form in summer. -During winter
conditions, open water formation tends to be mainly
limited to short-lived nearshore deformational
events. In these events the ice moves away from

TABLE 3. Characteristics of two

the coast for a few weeks and then closes up again.
Examination of summer ice concentration charts
shows the simulated summer compactness effects to
be in qualitative agreement with observations.
However, quantitative differences exist. Many of
these differences appear to be related to spatially
varying thermodynamic effects not included in the
model. The excessively high simulated summer ice
concentration in the Chukchi Sea, for example, is
probably due to neglecting the influx of warm
Pacific water.

A corollary effect to the offshore ice motion is
the strong geographical variation in annual net ice
growth (amount of ice grown less the amount
melted). In particular, the annual net ice growth is

-year sensitivity experiments.*

Open Average

Ice water percent Net Net rms Thickness Thickness Average Average
produc- ice pro- of open drift drift velocity (day 145, (day 145, thickness thickness
Outflow tion ductjon water magnitude angle (day 17) position 3) position 4) (day 145) (day 241)
Standard 0.493 m 0.702 m 0.256 m 2.30 489 km** —46°* 0.05i3 m s™* 9.132 m 1.885 m 3.314m 2.836 m
Shear strength
doubled 54.0% 82.6% 77.0% 77.8% 72.6% —44° 06.8% 93.0% 122.0% 105.3% 108.9%
Compressive strength '
doubled 103.7% 89.5% 77.0% 85.7% 92.8% —43° 90.8% 65.7% 116.2% 95.4% 94.5%
Open water strength
parameter (C)
doubled 101.6% 100.7% 100.0% 99.6% 102.1% —47° 101.4% 100.2% 101.7% 99.8% 99.7%
A=10 95.5% 82.5% — — 102.9% —45° 102.5% 98.3% 83.3% 92.9% 90.8%

* Except for the drift angle, sensitivity results are given in percentages of the standard values (line 1).

** Observed values 562 km; ~36°.
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TaBLE 4. Characteristics of eight-year sensitivity experiments.*

Open Average
Ice water percent Net Net rms Thickness Thickness Average Average
produc- ice pro- of open drift drift velocity {day 145, {day 145, thickness thickness
Outflow tion duction water magnitude angle (day 17) position 3) position 4) (day 145) (day 241)
Standard (8th year) 0.451 m 0.891 m 0.299 m 2.84% 566 km —4%° 0.0569 m/s 8.878 m 1.264 m 2.657 m 2.141'm
A =1 84.7% 94.7% —_ — 105.5% —-50° 105.1% 85.7% 73.9% 83.9% 78.9%

* See first footnote of Table 3.

very large (>1.0 m per year) off the North Slope
and Siberian coast. Off the Canadian Archipelago,
on the other hand, the net growth is negative re-
flecting the fact that the ice there is so thick that
ablation occurs year-round.

With respect to average basin-wide statistics,
the standard simulation yields an annual average out-
flow rate of ~0.1 Sv in good agreement with observa-
tional estimates. This outflow, in turn, causes a
net ice growth of 0.42 m annually which occurs
in equilibrium in order to balance the ice mass bud-
get. However, less a priori obvious changes caused
by adding in the dynamics were a 150% increase
(as compared to the no dynamics simulation) in the
ice production and a reduction (~30%) in the
basin-averaged ice thickness. The large ice produc-
tion (total amount of ice grown) is in good agree-
ment with observed estimates, while the reduced
thickness is not. The fact that the ice production
increases by an amount greater than the outflow
arises primarily from the increased ablation due to
the buildup of thick ice along the Canadian
Archipelago. Under balance conditions, the total ice
growth must balance both the outflow and the in-
creased ablation. The reduction in mean ice thick-
ness, on the other hand, is primarily due to the fact
that thinner ice and/or more open water are re-
quired to create the increased growth needed to bal-
ance the outflow. In the standard simulation the re-
duced thicknesses required for this (~2.6 m) are
rather low compared to observed estimates of 3.5 m.
This is in contrast to the dynamics-free simulation
which yields about a 3.7 m equilibrium thickness
in good agreement with observations.

A possible source of this thickness discrepancy
might be reduced growth-rate estimates due to in-
sufficient detail in the ice thickness distribution.
While the two-level thickness distribution used here
approximately keeps track of ice in the 0-0.5m
range it does not provide much detail on the thicker
ice. Due to the nonlinear nature of the ice growth
rates it is probable that the mean growth rate of
thick ice is larger than the growth rate based
on a single mean thickness. Another error source
might be inadequate open water formation in winter.
In particular, by allowing open water to form due to
shear as well as divergence, the ice growth could
be increased. Clearly, these considerations empha-

size the importance of carrying out simulations
along the lines of this study with more detail in
the ice strength and ice thickness evolution equations.

Overall, these simulation results illustrate the im-
portance of ice transport on the Arctic heat budget.
The effects of this transport are somewhat different
from the effects of lead formation due to ice de-
formation. In particular, the creation of leads pri-
marily modifies the local heat budget while the
transport acts, in effect, to move heat laterally.
For example, by means of ice transport, heat can
effectively be transferred from a portion of the
ocean (where ice is melting) to the atmosphere
above a different portion (from where the ice is being
transported). By constantly transporting ice away
from the North Slope region and ultimately out of
the Arctic Basin, the dynamics are, in effect, setting
up a heat flux from the Greenland sea to the North
Slope atmosphere. In the numerical experiments
done here the magnitude of this lateral heat flux by
ice motion is equivalent to, or larger than, thermo-
dynamic losses without ice motion. Consequently,
inclusion of this ice transport in Arctic heat budget
studies appears critical. Also, since the ice produc-
tion is partially a wind-driven effect, it may in many
cases respond differently than the thermodynamics
to atmospheric conditions. For example, warmer air
accompanied by greater cyclonic activity may
actually increase ice production due to greater
lateral transport even though the local thickness is
reduced.

The main objective of this work was to simulate
the effects of reasonable ice interaction assump-
tions on the Arctic sea ice circulation and thickness
characteristics. For this purpose, a plastic ice rheol-
ogy was used in conjunction with a two-level ice
thickness parameterization for determining the
amount of thin ice in the pack and the strength of
the ice interaction. While simple, these param-
eterizations do capture many features of the variable
ice thickness vis-a-vis growth and ice strength.
Moreover, the numerical experiments described
here have been fairly successful in reproducing
many of the observed velocity and thickness char-
acteristics of the Arctic ice cover. However, a
number of quantitative shortcomings have been
noted. It seems likely that many of these short-
comings are due to the idealized treatments made
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of the thermodynamics, the coupling of the ice
with the ocean, and the ice thickness distribution.
Efforts are currently underway to improve these as-
pects of the model. It is hoped that this study will
also provide motivation for similar efforts by other
scientists in identifying the role of sea ice in cli-
matic change.
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APPENDIX A
Spatial Finite-Difference Code
1. Momentum equations

In the momentum equations it is necessary to
solve by relaxation coupled linearized equations
with Dirichlet boundary conditions of the form

A + Do — D + F; + AyOuldx + A0uldy = 1o,
—A\u — Do — Dou + Fy + A,00/0x + A;00/0y = 7,,

where A\, D,, D,, A, , are spatially varying constants,
F, and F, are given by Eq. (5) and (6); and 7, and
7, are input forcing fields. To obtain finite-differ-
ence forms for F, and F, expressions are needed
for terms of the form (nu )z, (Muy)zs (Muy)y, (MUtz)y,
P,, P, and similar terms with « replaced with v.

(In these expressions x and y subscripts indicate .

spatial finite differences.) To show the general
format it suffices to illustrate the 1st two terms
and the last term. Denoting space coordinates
by subscripts and using half-integer subscripts
for n and P since a staggered grid is employed,
the following forms were used for a square grid
with mesh size A:

{(nux)m}ij
1

= 7 [(Misy2i-v2 T Mirvzgrye)Mivr; — Usy)

= Mi—vzg-vz + Micyzirye) Uiy — Wi )],
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{(nuy); }u
L
4h?

v vzgrve(Wir e + Uigon — Uiprs — i)
+ Nivyzg-ue(Uiv; + Uiy — Uip1jo1 — Uijoy)
+ Nicypgruz(Uiy + Uimyg — Uijer — Uisyjs1)

+ Niyzi-yo(Uijmr + Uisygoy — Uiy — Uiy 5)],
1

{P:}s = 2 (Pivyzirye + Pisyzi-v2

- Pi~112J+1/2 e Pi—l/Z,j—112)-

Denoting by (F,p); the finite difference expression
for F, with the diagonal components u; removed
with coefficient D, (and similarly for (F,p);;, the
expression for F, with v; components—coefficient
D,—removed), the finite-difference equations are
solved at each grid point for the superscripted values
in terms of the old ; values according to

MG+ Dot — Dt + (Fup)is

+ D uif + (Aw)y = 7,
+ (Fup)i

+ Dot + (Av)y; = 7,

—Auif! — Dot — Duif?

where (Au)i; denotes the momentum advection term

1 : X ; .

571- [A iy — uiory) + AUl — uijy))
and similarly for (Av)j;. The solved equations are
then used to replace the old values at position i, j
and the sweep continued. Note that at each grid
point two simultaneous equations for ui* and vij?
must be solved. Without treating the Coriolis terms
in this manner the iteration can be shown by a
local stability analysis to be unstable for long wave-
lengths. For an overrelaxation which will normally
be faster (but in certain cases can diverge) the
old value is replaced by u}, where u} = w(ui!
— u};) + ul; and similarly for v;. For calculations
performed in this paper w = 1.5 was found to
be useful.

The only other finite differences needed for the
momentum equations are strain rate estimates for
use in calculating the nonlinear viscosities. These
were obtained by an average over the grid cell, e.g.,

1

Er)irrzgrre = — Mivrgm + Wiy = Uiger — Uiyl

2h

with similar expressions for the other components.

2. Continuity equations

In the ice thickness equations spatial finite dif-
ference of the following terms is required to ex-
plicitly integrate the equations forward in time:
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0%h 0%h
8(vh)/dy, D , D .
(wh)/dy ! ax? z Ox20x 2
For the advection terms, centered spatial differ-
ences identical to those used by Bryan (1969) are
employed, viz.,

uh)/ox,

[@h) e livaspirne

1
= — [(hiryegirz t Aorspsrie)Mirrin + Uiry)

4h

~ (Mivipge + Hicpgre)Mimi i + Uiy )]

and similarly for (vh),. Since the velocities are
zero on the boundaries this automatically conserves
mass and can be shown to conserve energy for the
incompressible portion of the velocity field. In order
to conserve mass for the diffusion terms, the dif-
fusion coefficients are considered to be spatially
varying—zero on the boundaries and constant in the
interior. The harmonic diffusion term for example is
thus properly written (8/0x;)/[D,(8h/0x;)] and in
finite-difference form is (where for convenience the
half integer subscripts have been replaced by
integers for the #’s)

06
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{(Dlh.z‘).l‘}ij = {(hi+1,j - hi,j)Du'+1/2,j

- (hi,j - hi—lJ)Dli—-ll2J}
with a similar expression for (D.h,),. For the
biharmonic diffusion term, it is considered to be
of the form

9 8 9 3
— VD) — — VD, — h
ox, ox; Ox, ax,
and is performed by two successive harmonic
diffusion operations.

APPENDIX B
Equilibrium Time Scale for the Momentum Balance

In the numerical solution of the momentum equa-
tion the nonlinear viscous terms are treated in a
semi-implicit manner. In particular, at each time-
step an estimate of the velocity field is used to deter-
mine the desired viscosities. These estimated
viscosities are then used to advance the velocity
field to the end of the timestep. Consequently, if,
for example, the system is spun up from equilibrium
with a constant forcing field using large timesteps,

05

03

DRIFT RATE (m/s)
S

position 4

fu)

lday

lday

-2

-

position 8
1 1 )

Jhr 1hr 10hr

100hr 1000hr

TIME

FiG. Bl. Apprqach to equilibrium of the ice velocity using different timesteps in the integration of the
momentum equations. In all cases the ice was initially at rest and then a constant wind field turned on.
The u component of ice velocity at two selected locations is shown.
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even though the inertial terms are negligible, several
timesteps will be required to attain equilibrium.
Because of this fact timesteps, in practice, should be
chosen to be small compared to the scale of tem-
poral variability of the forcing field.

In order to examine the speed of response of
the momentum equations as well as the time scales at
which inertial effects become important, several
integrations of the momentum equations were per-
formed at different timesteps, using a fixed-strength
and fixed-forcing fields. In all cases the system
was at rest at time zero and a spatially varying but
temporally constant wind field then turned on. The
grid was the same as that used in the standard
simulation (Fig. 6). Resulting velocity values at the
circled grid points near grid cells 4 and 8 are plotted
versus time in Fig. B1. In all cases the integration
was continued for at least 4 days.

As illustrated by the integration at 5 min time-
steps, the response of the basin to study state
takes several hours and is limited by the inertial
terms. (That this response is the true inertial limited
response was verified by carrying out an integra-
tion at 1 min timesteps with essentially identical
results to the 5 min timestep results.) At long time-
steps, on the other hand, the inertial terms do not
prevent the rapid adjustment of the nonlinear vis-
cosities, and after only about four timesteps the system
approaches the same equilibrium velocity state as
obtained using small timesteps. For the modeling
calculations used in this study, 8-day averaged forc-
ing fields were used. Consequently, 1-day time
steps were felt to be small enough to allow ade-
quate adjustment.

APPENDIX C
Velocity Change Due to Ice Thickness Buildup

The time scale for the momentum equation to
come to equilibrium is of the order of 1 day, whereas
the time scale for thickness equilibrium in the basin
is of the order of several years. The time scale for
the velocity change due to ice buildup is inter-
mediate between these two and is of the order
of weeks.

To illustrate this the grid and parameters used
for the standard simulation were used to perform a
fixed wind field integration. In particular, a constant
geostrophic wind (of magnitude 8.52 m s™!), which
yielded a constant surface wind in the negative x
direction blowing perpendicular to the boundary
along the North Slope, was assumed. Using this
forcing field, the coupled system of equations were
integrated (using fixed January growth rates) for
over a year with initial conditions of a constant
thickness of 3.2961 m. Also, to minimize the non-
perpendicular motion the Coriolis parameter was
taken to be zero and the geostrophic currents ne-
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FiG. C1. Ice velocity perpendicular to shore (a) and thickness
(b) as a function of distance from shore at various time intervals
for a constant onshore wind.

glected. In Fig. C1, the velocity component per-
pendicular to the North Slope and ice thickness
values are plotted versus distance from shore be-
ginning at grid cell 4. Plots are made on days 5, 25,
50, 100 and 200. As can be seen, after about three
weeks the velocity nearest shore has dropped to
one-fourth of its early value and the thickness
has doubled. As the simulation proceeds the edge of
the moving pack gradually moves further and fur-
ther away from shore. Also in the 200 day curve,
the thickness far from shore becomes smaller due
to the mass of ice in the basin being all stacked up
against the shore even though the Greenland-Spits-
bergen open boundary outflow condition does allow
some ice inflow.

This particular simulation also serves as a useful
test of the effect of diffusion. As a sensitivity study
this same simulation with the diffusion reduced by
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an order of magnitude was carried out with almost
identical results being obtained. This indicates both
that the diffusion is not affecting the simulation
results appreciably and that it could be reduced
substantially with no ill effects. One of the reasons
for this appears to be that in the complete coupled
model the coupling of the strength to the ice thick-
ness equations tends to have effects similar to
diffusion since, for example, thin ice regions will
be more¢ easily compressed. The diffusion values,
on the other hand, were initially chosen based on
fixed velocity field advection tests with no dynamic-
thickness coupling.
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