

## Data assimilation in NEMO shelf

James While, Matthew Martin





•The Met Office has 2 shelf sea models:



•SST data is assimilated into both of these models.



## Data assimilation in the AMM7



# Data assimilation Method

•The AMM7 uses an Analysis Correction method of Data assimilation. This is a simplified form of the Kalman Filter.

•Only SST data are assimilated.

•The scheme uses a First Guess at Appropriate Time (FGAT) method of comparing observations with the model.

•An Incremental Analysis Update (IAU) scheme is used to apply increments to the model

### In essence, the assimilation proceeds as follows...







- Currently ran both operationally and in hindcast mode.
- Went operational on 16<sup>th</sup> March 2011.
- Providing products to the MyOcean2 consortium.





#### Results Mean difference to OSTIA (2008)



60°N

50°N

10°W

10°F



10

2008 Annual Mean SST

2008 Annual Mean SST

2

 $^{-1}$ 

-2

-3

3

2

 $^{-1}$ 

-2

-3

2

0 -1

-2 -3

10°F

10°W



## Data assimilation in the PGM4



•PGM4 used a 3DVar method of data assimilation based on the NEMOVAR set of code.

- •This scheme has a number of advantages over the AMM7 scheme:
  - More efficient minimisation faster!.
  - Diffusion based correlation functions.
  - More flexibility in specifying error covariance relationships.

•Nonetheless, there are many similarities with the AMM7 scheme:

- only SST data are assimilated.
- Still a FGAT system.
- Increments are added down to the base of the mixed layer
- Increments are added to the model over 1 day with a IAU scheme.



In 3DVar we find **x** (the analysis) that minimises:



The matrices **B** and **R** act as weights between the two terms, and also serve to spread the information in space.



Observations assimilated into the PGM4 model are the same as the AMM7 model.



Except...

















#### Met Office

- The Met Office has two shelf seas models that include data assimilation:
- The AMM7 is the Met Office model of the North West Shelf •
  - It was the Met Office's first shelf seas model to include data assimilation, but only of SST. ٠
  - Data assimilation is conducted with a FGAT Analysis Correction scheme, with an IAU step.
  - Assimilation of SST does improve the near surface temperature.
  - In the near future we will move to a 3DVar data assimilation system (NEMOVAR) and begin assimilating T&S profiles and altimeter data.
  - We plan to significantly improve the specification of error covariances by making them depend on the bathymetry and SST gradients.
- The PGM4 is the Met Office's model of the Persian Gulf •
  - It uses fundamentally the same code as the AMM7, but has different bathymetry and forcing. ٠
  - Data assimilation is conducted with a FGAT 3DVar scheme, with an IAU step, but is (again) only of SST.
  - Assimilation of SST does improve the near surface temperature, and removes some significant biases.





#### Met Office

The model & observation errors and error covariances specify how we weight and spread the innovations.

The errors and error covariances are unknown and impractical to specify exactly.

In consequence, we use a function fitting approach to model the error covariances

For the AMM7 we use 2 methods to find the parameters of our functions:



#### NMC method: Parrish & Derber (1992)

- •Based on the difference between forecasts of different lengths
- Only gives model error
- •Underestimates magnitudes
- •High resolution (model grid scale)









Mathematically the process on the previous slide is given by:

