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The seasonal sea ice and snow cover in the Arctic Ocean strongly reflect 
and attenuate incoming solar radiation. Consequently, current estimates 
of pan-Arctic primary productivity assume that the growth and biomass 
of phytoplankton, free-floating single-celled photosynthetic organisms at 
the base of the marine food web, are negligible in waters beneath ice 
because of insufficient light (1). However, during the 2011 ICESCAPE 
(Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific 
Environment) cruise, we observed a massive phytoplankton bloom that 
had developed beneath the 0.8- to 1.3-m-thick first-year sea ice on the 
Chukchi Sea continental shelf. 

From 4 to 8 July, we sampled (2) along two 250-km transects ex-
tending from open water far into the ice pack (fig. S1). Depth-integrated 
phytoplankton biomass beneath the ice was extremely high (Fig. 1, A 
and B), about fourfold greater than in open water. This massive under-
ice bloom extended for >100 km into the ice pack. Peak particulate or-
ganic carbon biomass (28.7 to 32.5 g C m−2) was located far within the 
pack in the vicinity of the shelf break where ice was thickest and nutrient 
upwelling had been driven by easterly winds. Biomass was greatest 
(>1000 mg C m−3) near the ice/seawater interface and was associated 
with nutrient depletion to depths of 20 to 30 m (Fig. 1, C and D), indica-
tive of phytoplankton, rather than ice algal, growth. Species composition 
of the bloom was distinct from that in the overlying ice and was over-
whelmingly (>80% by cell cross-sectional area) dominated by healthy 
pelagic diatoms of the genera Chaetoceros, Thalassiosira, and 
Fragilariopsis. Furthermore, rates of phytoplankton growth (0.83 to 1.44 
day−1) and carbon fixation (1.2 to 2.0 mg C mg−1 chlorophyll a hour−1), 
and the maximum efficiency of photosystem II (>0.5), were high to 
depths of >50 m within the under-ice bloom. 

In contrast, phytoplankton biomass in open waters was markedly 
lower than that beneath the ice and was greatest at depths of 20 to 50 m 
(Fig. 1, A and B) because of nutrient depletion near the surface (Fig. 1, 
C and D). The high oxygen (480 μmol l−1) and low dissolved inorganic 
carbon (2020 μmol l−1) relative to the low phytoplankton concentrations 

(~150 mg C m−3) in these nutrient-
depleted waters suggest that they had 
recently supported high rates of phy-
toplankton growth. Thus, the ice-free 
portions of both transects likely har-
bored remnant under-ice blooms that 
had developed near the surface weeks 
earlier, when the region was ice-
covered. 

The light required by the under-
ice bloom had to penetrate the fully 
consolidated ice pack to reach the 
upper ocean. Light transmission 
through ice was enhanced by a recent 
increase in the fraction of first-year 
ice, which is much thinner (0.5 to 1.8 
m) than the historically dominant 
multiyear ice pack (2 to 4 m), and 
especially by a high surface melt 
pond fraction (25 to 50%). Optical 
measurements showed that the ice 
beneath these melt ponds transmitted 
fourfold more incident light (47 to 
59%) than adjacent snow-free ice (13 
to 18%). Although the under-ice light 
field was less intense than in ice-free 
waters, it was sufficient to support the 
blooms of under-ice phytoplankton, 
which grew twice as fast at low light 
as their open ocean counterparts. 

The Arctic Ocean has an enormous, mostly ice-covered continental 
shelf, ~50% of which has surface nitrate concentrations >10 μmol l−1 in 
early spring (3), making these potential sites for under-ice phytoplankton 
blooms. Previous reports hinted at similar blooms in the Barents Sea, 
Beaufort Sea, and Canadian Arctic Archipelago (4–6), suggesting that 
under-ice blooms are widespread. If so, current rates of annual net pri-
mary production on Arctic continental shelves, based only on open water 
measurements, may be drastic underestimates, being 10-fold too low in 
our study area. Work is still required to determine the timing and spatial 
distribution of under-ice phytoplankton blooms across the Arctic Ocean, 
the extent to which they are controlled by thinning sea ice and proliferat-
ing melt pond fractions, and how they affect marine ecosystems. This is 
particularly important if we are to understand and predict the biological 
and biogeochemical impacts of ongoing and future changes in the Arctic 
Ocean physical environment. 
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Fig. 1. Under-ice phytoplankton bloom observed during ICESCAPE 2011. (A) 
Particulate organic carbon (POC) and (C) nitrate from transect 1. (B) POC and (D) 
nitrate from transect 2. Sea ice concentrations and station numbers are shown 
above (A) and (B); black dots represent sampling depths; black lines denote 
potential density. 
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