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Abstract. A semi-analytical method is presented for 
constructing a global orthogonal curvilinear ocean 
mesh which has no singularity point inside the compu- 
tational domain since the mesh poles are moved to 
land points. The method involves defining an analyti- 
cal set of mesh parallels in the stereographic polar 
plan, computing the associated set of mesh meridians, 
and projecting the resulting mesh onto the sphere. The 
set of mesh parallels proposed here is defined as a se- 
ries of embedded circles. The resulting mesh presents 
no loss of continuity in either the mesh lines or the 
scale factors over the whole ocean domain, as the mesh 
is not a composite mesh. Thus, the Bering Strait can be 
opened without specific treatment. The equator is a 
mesh line, which provides a better numerical solution 
for equatorial dynamics. The resolution can be easily 
controlled through the definition of three analytical 
functions which can increase resolution and/or main- 
tain a low ratio of anisotropy. The mesh has been im- 
plemented in the LODYC general circulation ocean 
model. Results of a semi-diagnostic simulation are 
shown. 

1 Introduction 

The Arctic Ocean is an active participant in the global 
climate system which influences both its oceanic and 
atmospheric components. The sea ice export and fresh 
polar surface water outflow regulate the deep convec- 
tion in the Nordic Seas (Aagaard and Carmack 1989), 
while the deep Arctic water outflow actively contri- 
butes to the formation of the North Sea deep water. 
All these exchanges ultimately determine the charac- 
teristics of the North Atlantic Deep Water and have a 
significant impact on the global ocean "conveyor belt". 
Due to the presence of a permanent sea ice cover in- 
volving strong positive feedbacks between the atmo- 
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sphere and the ocean (Herman and Johnson 1980), the 
Arctic Ocean is also suspected to play a central role in 
the natural variability of the climate system (Mysak et 
al. 1990). Model experiments have also shown that it is 
quite vulnerable to large climatic changes from in- 
creased atmospheric CO2 as a result of positive feed- 
backs related to high latitude snow and sea ice (Wash- 
ington and Meehl 1986). 

The Arctic Ocean stratification plays a crucial role 
in maintaining the sea ice cover as well as in controll- 
ing the efficiency of the deep water formation on the 
shelves. The stratification is itself controlled by the sur- 
face fresh water input from river run-off and through 
the Bering Strait, and by the warm, salty inflow of At- 
lantic water from the Nordic Seas (Rudels 1989). In 
particular, the influence of the Bering Strait inflow on 
the global ocean circulation has recently been empha- 
sized by Reason and Power (1994) in a numerical 
study. They show an increase of 8% in the rate of for- 
mation of the North Atlantic Deep Water when the 
strait is open. 

In the development of a global ocean model for cli- 
mate purposes as well as for the study of the global 
thermohaline circulation, it is therefore important to 
include the Arctic Ocean and its connections to the At- 
lantic and Pacific Oceans. Unfortunately, the tradition- 
al geographical latitude-longitude coordinate system 
used in solving the equations of motion in ocean gener- 
al circulation models has a singular point in the Arctic 
Ocean at the North Pole, where the meridians con- 
verge inside the computational domain. The conver- 
gence places a severe restriction on the length of the 
time step allowed for computational stability of finite 
difference schemes. Various solutions have been ad- 
vanced to solve this problem. Bryan et al. (1975) ap- 
plied a zonal Fourier filter poleward of 45 ° on the 
prognostic fields in order to suppress the shortest 
wavelength components. However, this procedure can 
generate numerical noise as the non divergent nature 
of the flow is not necessarily preserved by the filter 
(Bryan 1987). Semtner and Chervin (1988) suppress 
the problem by the walling off of the Arctic Ocean at 
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65°N latitude. Another solution consists of using a 
composite mesh made up of two grids rotated by 90 ° 
relative to each other (one mesh's poles are on the oth- 
er grid's equator) (Deleersnijder et al. 1993; Eby and 
Holloway 1994; Gwilliam 1995). One mesh is used for 
the North Atlantic and Arctic Oceans and the other 
for the rest of the world ocean. The Bering Strait is 
closed and the two meshes are coupled along a line of 
longitude in one mesh and along the equator in the 
other. Although this solution solves the North Pole 
problem, it still presents two drawbacks. First, the grid 
size cannot be continuous across the equator: a small 
change in grid size occurs across the equator which can 
damage the second order accuracy of the numerical 
schemes used in the ocean model (Marti et al. 1992). 
However, the effect of such a discontinuity may be 
small as suggested by Coward et al. (1994). Second, the 
mesh does not link the Pacific Ocean to the Arctic 
Ocean continuously, so that a specific treatment must 
be developed to open the Bering Strait. 

The solution proposed in this study overcomes the 
North Pole singularity without these drawbacks, but 
requires an ocean model adapted to horizontal ortho- 
gonal curvilinear coordinates. It consists of covering 
the Earth with a global orthogonal curvilinear mesh in 
which the poles (i.e. points of convergence of mesh 
line) are located on land. Various methods exist for 
constructing such a mesh. Murray (1995) shows that a 
number of global orthogonal curvilinear meshes can be 
constructed quite simply by analytical means, using the 
properties of conformal map projection. However, the 
equatorial dynamics is better solved numerically when 
the mesh parallels have an east-west alignment at the 
equator. This additional requirement makes it neces- 
sary to resort to the use of composite meshes, when 
using analytical meshes proposed by Murray (1995). 
This inevitably results in some loss of continuity of 
scale factors (metric coefficients) across the join (Mur- 
ray 1995). The method proposed here is a semi-analyti- 
cal method which allows global orthogonal curvilinear 
meshes to be constructed for which poles are on land 
and the equator is a mesh line. 

The study is structured as follows: in Sect. 2 the 
technique used to defined the global ocean mesh is de- 
scribed. In Sect. 3, the choice of the various parameters 
is discussed. In the last section the results obtained for 
a global ocean model are briefly presented. 

2 Construction of the horizontal global mesh 

The basic idea of the mesh construction is to define 
judiciously an analytical set of mesh parallels. A differ- 
ential equation can be derived that must be verified by 
the mesh meridians. The numerical solution of this 
equation completes the global mesh construction. In 
order to simplify both the definition of the mesh paral- 
lels and the resolution, it is convenient to work on a 
north stereographic polar plan rather than on a sphere. 
Indeed, since the stereographic polar projection is a 
conformal transformation, the projection on the sphere 
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Fig. 1. In the stereographic polar plan (Ox, Oy), the mesh paral- 
lels A(/) are a series of embedded circles which have the same 
centre O outside A(Jeq) and which have centres that continuously 
move along the y-axis from O to  M.p inside A(jeq). Starting from 
point Mo(i) defined by the angle h(i), a mesh meridian F(i) is 
computed as the curve which intercepts each circle A(j) at right 
angles 

of an orthogonal mesh defined on this plan is also an 
orthogonal mesh. The problem can thus be reduced to 
a two-dimensional problem of defining an analytical 
set of mesh parallels and computing the corresponding 
mesh meridians on the stereographic polar plan. 

Let the horizontal ocean mesh be defined by the I- 
and J-curves, the mesh meridians and parallels, respec- 
tively. IM and JM are the number of I- and J-curves 
covering the global mesh, and Jeq is the number of J- 
curves in the Southern Hemisphere. Let (Ox, Oy) be a 
Cartesian coordinate system on the north stereograph- 
ic polar plan such that O and the unity circle are the 
stereographic polar projection of the North Pole and 
the equator, respectively (Fig. 1). 

2.1 The choice of J-curves 

The J-curves are defined as a series of embedded cir- 
cles which have the same centre O in the Southern 
Hemisphere (i.e. outside the unity circle) and which 
have centres that continuously move along the y-axis 
from O to Mnp (the mesh North Pole) in the Northern 
Hemisphere (i.e. inside the unity circle) (Fig. 1). This 
series of circles A (j) is defined for both hemispheres by 
the following equation: 

A(j):xZ + yZ-(f(j)  + g(j))y + f(j)g(j)=O je[1,JM] (1) 

where f and g are the functions which give the ordinate 
of the two intersections between A(j) and the y-axis, f 
and g verify the following properties: 

f and g are continuous and differentiable at least 
twice (a) 

f is strictly increasing and g is strictly decreasing with 
increasing j" (b) 

f(J t) = g(JM) (c) 
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f(Jeq) = -- 1 = -- g(Jeq) (d) 

f(j) = -g ( j )  jE[],Jeq] (e) 

Conditions (a) and (b) ensure that the circles are strict- 
ly embedded and that given a point M =  (x,y) on the 
stereographic plan, there exists one and only one 
j~[1,JM] which verifies (1); (c) that A(JM) reduces to 
a single point, the mesh North Pole M,~p; (d) that A(Jeq) 
is the unity circle, so that the equator is a mesh line; 
and (e) that outside the unity circle, all the circles are 
centred on O (i.e. the Southern Hemisphere configura- 
tion is geographical). Note that (e) can be modified to 
shift the mesh South Pole. This is a priori not necessary 
as the South Pole is already placed near the centre of 
the Antarctic continent. 

where a is the Earth's radius. The partial derivative of 
A and ~ with respect to i and j are computed using a 
fourth order centred finite difference scheme. A suffi- 
cient precision is reached for this computation by using 
a mesh which is one hundred times smaller than the 
mesh required. We verify the overall precision of the 
above mesh computation in the case of linear f and g 
functions where an analytical solution is known, and in 
the general case, by computing a mesh that was one 
thousand times smaller than the required one. In both 
cases, the accuracy of the mesh point positions and of 
the scale factors was found to be smaller than 10-5 m, 
that is a relative precision smaller than 10-so 

3 Choice of  a global ocean mesh 

2.2 Computation o f  the I-curves 

The/-curves form a series of curves F(i) which cross 
the equatorial circle A(Jeq) at a point Mo(i) defined by 
the angle (Ox, 034o)=h(i) ,  where h is a given contin- 
uous and at least twice different\able function (Fig. 1). 
h describes the/-point  distribution along the equator. 
The/-curves intercept each circle A(/') at right angles, 
i.e. they obey the following differential equation: 

dy = 2y - frO) +gO')) (2) 
dx 2x 

Since j is linked to (x,y) through Eq. (1), an analytical 
solution for Eq. (2) is by no means trivial except for 
particular expressions of f and g which do not verify all 
the properties (a) to (e). For example, when l a n d  g are 
linear functions of j, the curves F(i) which are solutions 
of Eq. (2) also form a linear series of embedded circles 
but the resulting mesh does not have a latitude/longitu- 
de configuration in the Southern Hemisphere. Howev- 
er, Eq. (2) can be solved numerically with a very high 
precision to find the /-curves. The algorithm used to 
compute the pairs (x(i,j), y(i,j)) is presented in the ap- 
pendix. The geographical coordinates of all the mesh 
points on the sphere are then obtained by applying the 
inverse of the stereographic polar projection: 

A(i,j) = 180° arctan (Y(i'J) l 
~r \x( i , j )J  

360o (3) 
~(i,j) = 90 ° - - -  arctan ( ~ )  +y2(i,j)) 

7T 

In order to complete the mesh computation, we 
have to evaluate the scale factors (i.e. the rate of defor- 
mation of the mesh or grid spacing) in the two horizon- 
tal directions. These scale factors el and e; are given 
by: 

el=-a[(~cosq~)2+(O@12] 1/2 
\-~-] J (4) 

e2 L\oj cosq~ +\~-j./ J 

The technique presented in the previous section allows 
the definition of various global ocean meshes, depend- 
ing on the mesh North Pole position (M,w) and the 
functions f, g and h chosen. The expected resolution 
will serve as guideline between the different choices. 
Here, we want to define a world ocean model to study 
the seasonal to decadal variability of the ocean with 
special attention devoted to the tropical interannual 
variability. The model resolution must be a reasonable 
compromise between ocean physics and computational 
resources. This leads, for the Southern Hemiphere, to 
a zonal grid spacing of 2 °, and to a meridional grid 
spacing of 1.5 ° at mid-latitudes decreasing to 0.5 ° in the 
equatorial strip. For the Northern Hemisphere, the 
mesh characteristics must be similar, in particular the 
scale factors must not be smaller than in the Southern 
Hemisphere, otherwise it would result in a more re- 
strictive CFL criterion. Therefore, the mesh North 
Pole has been set at 40°N and 90°E, i.e. over China. 
This is as far as possible from the geographical North 
Pole while being not too close to an oceanic area. The 
choice of h is straightforward and corresponds to a uni- 
form 2 ° grid spacing along the equator: 

h( i )=2i  l<_i<_IM (5) 

where h is expressed in degrees and I M =  180. 
For f and g, the analytical expression is somewhat 

more complicated. We found it convenient to define f '  
and g ' ,  the first derivative of f and g, as linear combi- 
nations of hyperbolic tangents plus a constant (Fig. 2), 
so that the grid spacing can be rather easily adjusted to 
the desired values, f and g expressed in degrees, take 
the following form: 

?q) =Aoj+A1 
+ B0 log [gosh [ ( / -  Yeq - -  JB)/B1]/cosh [(j - Jeq + J,)/"l]] 

(6a) 
- Co log [cosh [(/' - Jeq - Jc)/Cll/cosh [ ( / -  Jeq + Jc)/C1]] 

for 1 <_j <-Lq g(j) =f(/') 

for Yeq -< J-< JM gO) = D0j + D1 (6b) 
- Eo log [gosh [(/" - Jeq - &)~Eli~gosh [ ( /  - Jeq -~- & ) / E l ] ]  

The first (second) logarithmic term of Eq. (6a) is re- 
sponsible for a symmetrie change with respect to the 
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Fig. 2. Meridian scale factor e2 as a function of the mesh parallel 
index J. Each curve is associated with an integer value of the 
mesh meridian index I. The envelope of these curves (I=1 and 
I=  90) gives the first derivative of g and f 

equator  in the grid spacing between the equator  and 
mid-latitudes (mid-latitudes and polar  regions) (Fig. 2). 
The logarithmic te rm of Eq. (6b) is responsible for the 
decrease of the grid spacing nor thward of 30°N, over  
Asia (Fig. 2) which allows the grid pole to be at 40°N. 
The  choice of the 15 coefficients in Eqs. (6a) and (6b) 
is as follows. We first set the number  of grid points in 
the north-south direction and the index of the equator:  
J M =  150 and Jeq =64. Then,  we choose B1 = 10., JB = 14 
and B0 = 0.52 B1/tanh [JB/B1] which means that the var- 
iation of f '  f rom its equatorial  value to its mid-lati tude 
value occurs over  10 points at the 14th point on both 
sides of the equator  point, and with an ampli tude of 
2 x 0.52 = 1.04 °. Similarly, we choose C1 = 8., Jc = 65 
and C0=0.25 Cl/tanh[Jc/C1] for the variat ion of f '  
over polar regions. A0 and A~ are then specified such 
that f'(Jeq)=O.5 ° and f(Jeq)=O °, which leads to 
A0 = 0.5 + 2 x 0.52 - 2 x 0.25 = 1.04 ° and A~ = -AoJeq. 

A similar procedure  is used for g. We set E1 = 8. and 
J e = 6 5  and choose Eo such that g '  varies f rom 0.5 ° at 
the equator  to a min imum value of 10-2  at j =JM. This 
last condition ensures that  g '  is strictly positive 
(g '  > 0), i.e. the proper ty  (a) is satisfied. It  leads to the 
following expression for E0: 

E0 = (0.5 - 10 -a)/El/(2 tanh[Je/E~] 
- tanh [(JM - J~q - Je)/El] + tanh [(JM - Jeq + Je)/E1]) 

The value of Do and D1 are then specified such that 
g '  (J~q) = 0.5 ° and g(Jeq) = 0 °, which leads to 
Do = 0.5 - 2 E0 tanh (Je/E1)/E1 and DI = - DoJeq. 

Using these coefficients, f and g satisfy (a) to (e), 
apart  f rom (c). For  this last property ,  they can always 
be extended toward the mesh Nor th  Pole while verify- 
ing the other  required properties.  Howeve r  this part  of 
the mesh is on a continent,  i.e. out of the computat ion-  
al domain,  so that it is not required. 

Using the above functions and mesh Nor th  Pole po- 
sition and the numerical  procedure  described in the 
previous paragraph,  a global ocean mesh has been 
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Fig. 3. a Unmasked and b masked world ocean mesh and c ste- 
reographic north polar projection of the world ocean mesh. Only 
one mesh parallel and meridian in three are shown 

computed.  Its ocean/land masked  stereographic north 
polar  projection is shown in Fig. 3. The associated 
masked  scale factors and ratio of anisotropy, 
Ri=max(eJe2,ea/el), are shown in Fig. 4. The mesh has 
180 x 150 grid points. The  min imum value of the scale 
factors, 50 km, is reached in the Kara  and Weddell  
Seas. The ratio of anisotropy is max imum at the equa- 
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tor where it is equal to 4 (2 ° x 0.5°). It slowly decreases 
to 1 at mid-latitudes and then increases po leward  to 3 
at the end of the Kara and Weddell  Seas. This ratio 
remains below its equatorial value because of the de- 
crease of f '  in polar regions. 

4 Results  o f  the global ocean  mode l  

The mesh described in the previous section has been 
used in the Laboratoire  d 'Oc6anographie Dynamique 
et de Climatologie (LODYC)  primitive equation ocean 
general cirulation model (Delecluse et al. 1993) to si- 
mulate the global ocean circulation associated with the 
thermodynamic fields of Levitus (1982). The limiting 
factor for the time step is not the smallness of the scale 
factors, but the value reached by the Coriolis parame- 
ter at the North Pole. Indeed, the time step must verify 
2~fAt_<l  which leads to a maximum time step of 1 h 
55 min. As the time discretization of the Coriolis term 
is explicit in the model,  this is the most restrictive con- 
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Fig. 5. Model level depth(thick line) and associated vertical scale 
factors (dashed line) 

E 

straint on the time step which has led us to choose a 
model  time step of 1 h 40 min. 

In the vertical, the placement of vertical velocity 
and temperature  levels is defined from an analytic ex- 
pression of the depth z(k) whose derivative provides 
the vertical scale factor e3(k)=Oz/Ok (Marti et al. 
1992). The following function has been chosen: 

z(k)=ho-hlk-h2h31og[cosh(~hh3 4)] (7) 

where k = l  to KM for vertical velocity levels and 
k = 1 + 1/2 to KM+ 1/2 for temperature  levels. Such an 
expression allows us to define a nearly uniform place- 
ment of levels at the ocean top and bot tom with a 
smooth hyperbolic tangent transition in between (Fig. 
5). Here  we have chosen a 10 m (500 m) resolution in 
the surface (bottom) layers and a depth which varies 
from 0 at the sea surface to a minimum of - 5 0 0 0  m. 
This leads to the following conditions: 

e3(1 + 1/2) = 10. 
e3 (KM- 1/2) = 500. (8) 
Z=0.  
z (KM) = - 5 0 0 0 .  

The five coefficients h0 to h4 in Eq. (7) are determined 
such that Eq. (8) is satisfied. To do so, we first made an 
arbitrary choice of KM and h3, here K M = 3 1  and 
h3=3.  Using the first three conditions in Eq. (8), we 
express h0 hi and h2 as a function of h4, and then we 
de te rmine  h4~[1 ,KM] using a bisection method such 
that the last condition in Eq. (8) is satisfied. In the 
present case this leads to the following values: 
ho=4762.96, h1=255.58, h2=245.58, and h4=21.43. 
The resulting depths and scale factors as a function of 
the model  levels are shown in Fig. 5. 

The global model has eleven islands: Antarctica, 
America, Cuba, Madagascar, Philippines, Borneo,  New 
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Guinea, Australia, New Zealand, Iceland and Spitz- 
bergen. Non-zero depth-integrated circulation is per- 
mitted around each island. The bottom topography 
field is derived from the 5' x 5' ETOPO5 (1986) aver- 
aged over each model tracer grid box. A minimum 
depth for the ocean continental shelf has been set to 3 
levels ( - 3 0  m) and a maximum depth to 5000 m. Fi- 
nally, no smoothing operator has been applied on the 
resulting bathymetry, but alterations were made by 
hand to improve representation of major ridges and 
sills. In particular, a width of at least two tracer grid 
points has been imposed on straits and deep channels. 
This constraint is motivated by the discrete expression 
of the geostrophic balance which requires the defini- 
tion of a pressure gradient across the straits and chan- 
nels. 

Horizontal eddy viscosity and diffusivity coefficients 
were set to 4 10 4 m 2 s -1 and 2 10 3 m 2 s -a, respectively, 
while the vertical ones are computed from a 1.5 turbu- 
lent closure model (Blanke and Delecluse 1993). The 
model was forced with monthly Hellerman and Rosen- 
stein (1983) wind stress and Esbensen and Kushnir 
(1981) heat flux climatology plus a 12 day relaxation 
toward surface time varying temperature and salinity 
data of Levitus (1982). The integration was started 
with January Levitus (1982) data and pursued over a 
20 year period with an interior relaxation to the 
monthly mean temperature and seasonal mean salinity 
of Levitus (1982) with a relaxation time scale of 50 
days in the upper 800m and 1 year in the deep 
ocean. 

To give an exhaustive description of the simulated 
dynamics is beyond the scope of this study. A brief 
presentation of the annual mean circulation integrated 
either vertically or zonally is preferred to highlight the 
simulation behaviour. The annual mean barotropic 
stream function (BSF) associated with the vertically in- 
tegrated horizontal circulation is shown in Fig. 6a. In 
middle and low latitudes and away from the western 
boundaries and straits, the BSF almost reflects the 
Sverdrup transport derived from wind stress. The mag- 
nitude of tropical and sub-tropical gyres is similar to 
those obtained in other global models using the same 
wind product (see for example Semtner and Chervin 
1992). A zoom in the BSF field over the Arctic Ocean 
given in Fig. 6b emphasizes the importance of the flow 
through the Bering Strait on the Arctic circulation. Al- 
though the low model resolution in this region 
( -  110 kin, Fig. 3c) leads us to a widening of the Ber- 
ing Strait from 85 to 220 km (two temperature and vel- 
ocity grid points) with an adequate depth of 40 m, 
about 0.95 Sv (1 Sv=10 -6 m 3 s -1) enters the Arctic 
Ocean through the Bering Strait in good agreement 
with observations (Coachman and Aagaard 1988). This 
is only three times less than the net inflow west of Ice- 
land (3.4 Sv) and allows the Denmark Strait net out- 
flow to be 22% higher (4.35 Sv). 

Figure 7 shows the annual mean meridional stream 
function (MSF) associated with the zonally integrated 
meridional circulation both for the global circulation 
(Fig. 7a) and for the circulation only in the Atlantic 
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Fig. 6. a Annual mean barotropic stream function associated with 
the vertically integrated horizontal circulation and b zoom-in of 
the stream function over the Arctic ocean. The contour interval is 
10 and 1 Sverdrup, respectively. The numbers indicate the mass 
transport in Sverdrup through the different Arctic straits 

(Fig. 7b). The computation of these MSF is not 
straightforward as the mesh does not follow the longi- 
tudes in the Northern Hemisphere. MSF is deduced 
from a meridional flow which is computed for a given 
latitude as the flow that crosses a broken line which 
follows the faces of the mesh cells and is as close as 
possible to that latitude. The broken lines used for the 
North Atlantic MSF computation are shown in Fig. 8. 
This solution has been preferred to an interpolation of 
the velocity fields onto a geographic mesh before the 
computation. Indeed, such an interpolation introduces 
errors in the velocity, field which is no longer non-div- 
ergent, and thus the resulting MSF indicates a trans- 
port of water through the ocean floor or surface, de- 
pending on the direction of integration (Eby and Hol- 
loway 1994). The general features of both Atlantic and 
global MSF are similar to those obtained in other glo- 
bal models. No problem occurs that could be related to 
the stretched mesh used. Such a mesh appears to be 
well suited to the simulation of the global ocean circu- 
lation. 

5 Conclusion 

A semi-analytical method has been developed to con- 
struct a global orthogonal curvilinear ocean mesh. It 
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Fig. 7a, b. Annual mean meridional stream function associated 
with the zonally integrated meridional circulation for a the global 
circulation and b the circulation only in the Atlantic. The contour 
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consists in defining an analytical set of mesh parallels 
on a stereographic polar plan, then deriving and solv- 
ing a differential equation to compute the associated 
set of mesh meridians, and eventually projecting the 
resulting mesh onto the sphere. The set of mesh paral- 
lels used here has been defined as a series of embed- 
ded circles. It provides a world ocean mesh which has 
the following properties: (1) the mesh has no singulari- 
ty point inside the computational domain as the mesh 
North Pole has been shifted onto land ; (2) no loss of 
continuity of either the mesh lines or the scale factors 
occurs over the whole ocean domain, as the mesh is 
not a composite mesh; (3) the Bering Strait is opened 
without specific treatment; (4) the equator is a mesh 
line, which provides a better numerical solution for the 
equatorial dynamics; and (5) the resolution can be con- 
trolled through the definition of three analytical func- 
tions to increase resolution and/or to maintain a low 
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Fig. 8. The broken lines used for the North Atlantic meridional 
stream function computation. One line in three is shown 

ratio of anisotropy (see the resolution in the equatorial 
and Arctic regions). A world ocean model has been 
designed using this technique. It gives satisfactory re- 
sults and is currently being used both in forced (Madec 
1995, personal communication) and coupled mode 
(Guilyardi et al. 1995). 

The method can be applied to any other set of mesh 
parallels that are defined analytically, so that a differ- 
ential equation can be derived and solved to find the 
mesh meridian. For example, a solution that exhibits 
similar properties to the one presented here is sug- 
gested from Murray's (1995) work. The set of mesh pa- 
rallels can be defined as a series of embedded ellipses 
starting from the equatorial circle (or any other chosen 
latitude circle) and converging toward confocal ellipses 
whose focals are set onto North America and Russia, 
respectively. 
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Appendix: Numerical computation of/-curves 

Outside the unity circle, the / -curves  are half-rays, so 
that no computational effort is required to solve the 
differential Eq. (2). Inside the unity circle, Eq. (2) is 
solved starting from the point Mo(i) using a constant 
grid spacing Ax = cos(h(i))/N (where N is the number 
of space steps), by the following algorithm: 
- initialization: 

(x°,y °) = (cos[h(i)], sin [h(i)]) 
X 1 : X  0 - - A X  (A1) 

/ d y ~  ° 0 y" = y ° -  A X ~ x  ) =y - Axtan[h(i)] 

- f o r n = l t o N :  

First, the index j'~ of the circle A which goes through 
M,~ = (x~y n) is determined. This index is the solution of 
Eq. (1) for (yn, y~). The existence and uniqueness o f j  n 
is established by (a) and (b). The index is found at the 
machine precision by a method of bisection. Then, 
y,~+l can be computed using a second order centred 
finite difference approximation of Eq. (2): 
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X n+l =Xn_Ax 

y,  +t = yn - t + 2 A x  2y'l _ (f(j.,~) + gO'")) (A2) 
2x n 

Note that a higher order of approximation can be used, 
such as fourth order Runge-Kutta scheme, to solve Eq. 
(2). The choice is between increasing the accuracy of 
the scheme or spending an equivalent amount of extra 
computation time in reducing the grid spacing (larger 
value of N). The second alternative has been found to 
be more advantageous. The above computation allows 
each F-curve to be defined by a series of triplets 
( x ' ( i ) , y ' ( i ) , j ' ~ ( i ) ) ,  then a fourth order interpolation 
scheme is used to find, for each integer value of i, the 
coordinates (x~ ,y  ~') associated with integer values of j. 
This interpolation is done with a high precision as N is 
typically set to one hundred times JM-Jeq. 
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