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         Abstract 

 
A wide variety of scenarios for future development have played significant roles in climate policy discussions. This 
paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion and 
glacial melt, oceanic acidity, and global mean temperature increases computed with the MIT Integrated Global 
Systems Model (IGSM) using scenarios for 21st century emissions developed by three different groups: 
intergovernmental (represented by the Intergovernmental Panel on Climate Change), government (represented by 
the U.S. government Climate Change Science Program) and industry (represented by Royal Dutch Shell plc). In all 
these scenarios the climate system undergoes substantial changes. By 2100, the CO2 concentration ranges from 470 
to 1020 ppm compared to a 2000 level of 365 ppm, the CO2-equivalent concentration of all greenhouse gases ranges 
from 550 to 1780 ppm in comparison to a 2000 level of 415 ppm, sea level rises by 24 to 56 cm relative to 2000 due 
to thermal expansion and glacial melt, oceanic acidity changes from a current pH of around 8 to a range from 7.63 
to 7.91. The global mean temperature increases by 1.8 to 7.0 degrees C relative to 2000. 
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1. INTRODUCTION 
The literature on future greenhouse gas (GHG) emissions and resultant climate changes is 

populated by hundreds of scenarios of future development. These scenarios are dependent on 
many underlying assumptions about future human activity, the pace and shape of political and 
technological change, and the availability of natural resources. Some scenarios are developed 
simply as “storylines”, where no attempt is made to assign the likelihood of a particular scenario 
occurring. Other scenarios try to assign probabilities to specific outcomes. To project the 
development of human systems for a hundred years is a heroic exercise, but it is a desirable task 
for informing climate-related decisions. 

The purpose of this paper is to compare the scenarios developed by three different groups: 
intergovernmental, government, and industry. The chosen scenarios are analyzed using the same 
climate model in order to assess the range of outcomes in terms of CO2 concentrations, 
concentrations of all greenhouse gases expressed as CO2-equivalents, sea level rise due to 
thermal expansion and glacial melt, and global mean surface temperature.  

For the intergovernmental scenarios we have chosen the scenarios developed by the 
Intergovernmental Panel on Climate Change (IPCC) in its Special Report on Emissions 
Scenarios (SRES, 2000). As an example of scenarios developed under a government sponsored 
study, we have chosen the U.S. Climate Change Science Program report on greenhouse gas 
scenarios (US CCSP, 2007). Industrial scenarios are represented by the recently released Shell 
energy scenarios (Shell, 2008). 

To explore climate response we use the MIT Integrated Global System Model (IGSM) 
Version 2.2 which has several improvements over Version 1 (Prinn et al., 1999) as described in 
detail in Sokolov et al. (2005). The IGSM 2.2 couples sub-models of human activity and 
emissions, the Emissions Prediction and Policy Analysis (EPPA) model, atmospheric dynamics, 
physics and chemistry (including separate treatment of urban regions), oceanic heat uptake, sea 
ice and carbon cycling, and land system processes described by the coupled Terrestrial 
Ecosystem Model (TEM), Natural Emissions Model (NEM), and Community Land Model 
(CLM).  

The paper is organized in the following way. Section 2 briefly describes the three 
representative types of scenario exercises. In Section 3, we compare the emission profiles for 
CO2 and other GHGs for each scenario. Section 4 presents the results for the atmospheric 
concentrations of CO2 and all GHGs combined for the US CCSP and Shell scenarios. For the 
SRES scenarios, the atmospheric concentrations are not computed but simply input to the IGSM 
based on the numbers reported in the IPCC Third Assessment Report (IPCC, 2001). Section 5 
shows the results for sea level rise and oceanic acidity. In Section 6, we present changes in the 
global mean surface temperature. Section 7 notes the uncertainty of the climate results and 
summarizes our findings. 
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2. CLIMATE SCENARIOS 

2.1 Intergovernmental: SRES 

The Special Report on Emissions Scenarios (SRES, 2000) was prepared for the Third 
Assessment Report of the IPCC. There are four main “storylines” (denoted as A1, A2, B1, and 
B2) defined in the report. These storylines are further divided into 40 scenarios developed by six 
modeling teams. It is claimed that all 40 scenarios are equally valid, with no assigned 
probabilities of occurrence. While some scenarios assume more environmentally-friendly 
development of the world than others, the SRES scenarios do not include any explicit climate 
policies. 

The scenarios under the storylines are further divided into six groups: one group each in the 
A2, B1 and B2 storylines, and three groups in the A1 storyline, characterizing alternative 
developments of energy technologies: A1FI (fossil intensive), A1T (predominantly non-fossil) 
and A1B (balanced across energy sources). Then illustrative scenarios were selected by the IPCC 
to represent each of the six scenario groups.  

We focus here on four illustrative SRES scenarios: A1FI (represented in the SRES projections 
by the MiniCAM model), A1B (represented by the AIM model), A2 (represented by the ASF 
model), and B1 (represented by the IMAGE model). As the SRES does not provide all 
information necessary for driving the full MIT IGSM, we have used the anthropogenic and net 
land use emissions reported in IPCC (2001). 

2.2 Governmental: US CCSP 

The United States Climate Change Science Program (US CCSP) was established in 2002 as a 
coordinating body for U.S government activities on climate change. The CCSP strategic plan 
calls for the creation of a series of more than twenty assessment reports. The emissions scenarios 
are presented in the CCSP Synthesis and Assessment Product 2.1.a (US CCSP, 2007). They were 
developed using three integrated assessment models (IAMs). Each modeling group first 
produced a reference scenario under assumptions that no climate policies are imposed. Then each 
group produced four additional stabilization scenarios framed as departures from its reference 
scenario achieved with specific policy instruments, notably a global cap and trade system with 
emissions trading among all regions beginning in 2015. The stabilization levels are defined in 
terms of the total long-term effect on the Earth’s heat balance of the combined influence of all 
GHGs.  

The stabilization scenarios were chosen so that the associated CO2 concentrations would be 
roughly 750, 650, 550, and 450 ppm, although the study also formulated the targets as radiative 
forcing levels that allowed some additional increases in the other greenhouse gases. Obviously, 
the CO2-equivalent concentrations including the radiative forcing from the other greenhouse 
gases are higher than the above CO2 concentrations.  
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The MIT IGSM was one of the three models utilized in the CCSP scenario development. 
Anthropogenic emission profiles were created by the economic (EPPA) component of the IGSM 
(Paltsev et al., 2005), where an idealized cap-and-trade system was implemented in which the 
whole world participated. 

The climate component of the IGSM has evolved since the CCSP exercise. Hence we run the 
emissions profiles from the above CCSP 2.1.a exercise through this modified IGSM, so that the 
climate and carbon cycle results reported here are somewhat different from the IGSM results 
reported in US CCSP (2007). 

2.3 Industry: Shell 

A number of private companies have also formulated their own scenarios for future 
development. For example, Shell (Royal Dutch Shell plc) reports the results of several different 
scenario exercises on its website (www.shell.com/scenarios). We have used the recently released 
Shell energy scenarios up to 2050 (Shell, 2008). Shell describes two scenarios: Scramble and 
Blueprints, where Blueprints is more technology and environmentally optimistic. These 
scenarios attempt to capture how the world might actually develop and so they include, 
implicitly at least, a wide mix of economic incentives and policy measures that vary by country 
but that are motivated specifically by concerns about climate change. It is assumed for example 
that carbon capture and storage (CCS) technology is economic and fully available in the 
Blueprints scenario. Shell also considers a variation on Blueprints where CCS is not available. 
The results for this scenario are labeled as “Blue_excl_CCS” in the figures and tables of this 
report.  

The Shell scenarios do not provide projections of non-energy related emissions of GHGs and 
other pollutant emissions that are needed to run the IGSM. We fill in this missing data by 
constraining the EPPA model to match the Shell fossil CO2 emission profiles while providing 
similar constraints for the non-energy CO2 emissions and other non-CO2 GHGs. In this way, we 
project the full suite of emissions of climate related substances that are consistent with the Shell 
energy scenarios. 

For assessing climate results, we were interested in extending the Shell projections beyond 
their 2050 horizon and we communicated with Shell to develop some relatively simple 
extrapolations (private communication, 2008). Shell notes that in the Scramble scenario late (i.e., 
mid-century) actions are assumed, and if this were the beginning of a continued strong effort, the 
reductions might accelerate more rapidly than in our simple extrapolation.  If so we might see 
less climate change than the version of the Scramble scenario portrayed in this paper. Regardless 
of this, we expect the climate consequences of the Scramble scenario to be greater than in the 
Blueprints case which benefits from earlier actions. 
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3. GREENHOUSE GAS EMISSIONS 

3.1 Fossil and other Industrial CO2 Emissions 

The sums of the fossil and other industrial CO2 emissions for each scenario are presented in 
Figure 1. We use the following coloring scheme to better illustrate the scenarios: SRES 
scenarios are shown in blue, US CCSP scenarios are in green, and Shell scenarios are in red. The 
US CCSP reference scenario (i.e., with no climate policy) is similar in cumulative emissions to 
the SRES A2 scenario and lower than the SRES A1FI scenario. The US CCSP Level 1 
stabilization scenario has the lowest emissions profile. 

 
Figure 1. Fossil and other industrial CO2 emissions (Shell in red, CCSP in green, SRES in 

blue). Units are megatons (1012 gm) of CO2 per year.   

3.2 Anthropogenic Terrestrial Vegetation CO2 Emissions and Sinks 

In general, there is less certainty about net anthropogenic CO2 emissions from terrestrial 
vegetation (from deforestation, sequestration through reforestation, and other land use changes) 
compared to the fossil and other industrial emissions and so estimates of year 2000 emissions 
among the different groups differ (Figure 2). Sabine et al. (2004) provide a summary of 
uncertainty estimates in the land use change component.  

The SRES A1FI scenario has the highest fossil and other industrial CO2 emissions and the 
highest terrestrial sink. The US CCSP and Shell numbers reported here are derived from EPPA 
under the assumption that current land use emissions directly related to anthropogenic activities 
are gradually eliminated (through some combination of reduced deforestation and offsetting 
reforestation).  
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Figure 2. Anthropogenic Net Terrestrial CO2 emissions (negative numbers represent a net 

sink). (Shell in red, CCSP in green, SRES in blue). 

3.3 Non-CO2 GHG Emissions 

Among the non-CO2 greenhouse gas emissions are methane, CH4; nitrous oxide, N2O; 
hydrofluorocarbons, HFCs; perfluorocarbons, PFCs; and sulphur hexafluoride, SF6.They are 
reported here in CO2-equivalents based on their 100-year Global Warming Potentials (GWPs) 
(Figure 3). Again, uncertainties lead to different estimates of emissions in the year 2000. The US 
CCSP Reference, Shell Scramble, SRES A1FI and SRES A2 scenarios all assume a substantial 
increase in non-CO2 GHGs. Most of the US CCSP stabilization scenarios and the two Shell 
Blueprints scenarios have these emissions relatively stable or slightly decreasing. The SRES 
scenarios have higher numbers for current non-CO2 GHGs. This difference originates mainly in 
the projection of HFCs. IPCC (2001) provides supplementary data to SRES (2000) for HFCs, as 
the data contained in the SRES (2000) report was not sufficient to break down the individual 
contributions to HFCs, PFCs, and SF6. The SRES emissions are also available at the CIESIN 
(Center for International Earth Science Information Network) website 
(http://sres.ciesin.columbia.edu/final_data.html), where HFCs are combined with CFCs and 
HCFCs. In the IGSM structure CFCs and HCFCs are phased out (Asadoorian et al., 2006). In the 
SRES A1B and B1 scenarios the non-CO2 emissions gradually decline approaching 2100. 
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Figure 3. Anthropogenic non-CO2 GHG emissions (Shell in red, CCSP in green, SRES in 

blue). 

Table 1 presents the non-CO2 emissions as a percentage of the total GHG emissions. The 
Shell Scramble scenario assumes no policy restricting non-CO2 GHG emissions. The US CCSP 
percentages are higher in the stabilization scenarios as it is harder to eliminate or to drastically 
reduce CH4 and N2O. The SRES scenarios assume no explicit climate policy as noted earlier. 
The emissions of the individual non-CO2 greenhouse gases covered by the Kyoto Protocol, and 
of aerosols (black carbon, BC; organic carbon, OC) aerosol precursors (SO2, NOX, NH3), and 
ozone precursors (CO, VOC, NOx) are provided in an Appendix. 
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Table 1. Non-CO2 gas emissions as a percentage of total GHG emissions. 
 

Shell CCSP SRES 

  
scram- 
ble 

blue_ 
excl_ccs 

blue- 
prints REF 

Level 
1 

Level 
2 

Level 
3 

Level 
4 B1 A1B A2 A1FI 

2000 29 29 29 29 29 29 29 29 32 32 32 32 
2010 29 22 21 27 28 27 27 27 29 27 30 29 
2020 27 20 20 26 28 25 25 25 25 23 25 24 
2030 28 20 20 25 30 24 23 23 25 22 24 23 
2040 28 21 22 24 32 23 21 20 24 22 24 22 
2050 30 23 26 23 35 24 20 19 24 21 24 21 
2060 32 25 29 22 36 26 20 18 26 21 24 20 
2070 35 27 32 22 37 28 21 18 29 20 24 20 
2080 37 30 34 22 37 30 23 19 31 20 24 19 
2090 39 32 37 23 38 32 25 21 34 20 23 20 
2100 41 35 40 23 39 34 27 24 37 20 22 20 

3.4 Total GHG Emissions 

Figure 4a presents total anthropogenic GHG emissions. As with fossil and other industrial 
CO2 emissions, the SRES A1FI emissions are the highest. The SRES A2 does not have the 
decline by 2100 seen in the US CCSP reference scenario, but the cumulative emissions are 
comparable. The US CCSP Level 2 stabilization and Shell Blueprints are comparable and the US 
CCSP Level 1 again is the lowest emission scenario, reflecting the specific long term radiative 
forcing goal that was part of the CCSP exercise.  

In addition to anthropogenic emissions reported in Figure 4a, there are natural emissions of 
CH4 and N2O computed in the NEM sub-model of IGSM, uptake of CO2 by terrestrial 
ecosystems (land sink) computed in TEM, and uptake by oceans treated in the ocean model. 
Figure 4b shows the net GHG emissions when these additional flows are included.  
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Figure 4a. Total anthropogenic GHG Emissions in CO2 equivalents (Shell in red, CCSP in 

green, SRES in blue). 

 
Figure 4b. Total natural and anthropogenic GHG Emissions in CO2 equivalents (Shell in 

red, CCSP in green, SRES in blue). 
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4.  CONCENTRATIONS 

4.1 CO2 Concentrations 

As mentioned in Section 2.1, we used the emissions profiles, derived using the EPPA model 
for the US CCSP and Shell scenarios, to drive the climate component of the IGSM. For the 
SRES scenarios we have driven the IGSM climate component using emissions reported by the 
SRES (2000) and IPCC (2001). Figure 5 presents the resultant CO2 concentrations. The SRES 
A1FI scenario results in the highest concentration (around 1020 ppm). The SRES A2 and US 
CCSP Reference scenarios are comparable in terms of their CO2 emissions and their resulting 
CO2 concentrations (around 890-900 ppm by 2100). The SRES A1B case has higher 
concentrations than the US CCSP Level 4 scenario as the A1B emissions profile is always higher 
than the Level 4 scenario. The SRES B1 and Shell Blueprints without CCS scenarios lead to 
almost the same CO2 concentrations of around 600 ppm by 2100. The US CCSP Level 2 and 
Blueprints cases have different curvatures in their CO2 emissions but yield similar cumulative 
emissions and CO2.concentrations of around 540 ppm. These cases have higher CO2 emissions 
and concentrations than the Level 1 scenario whose emissions and resultant concentrations are 
again the lowest. 

In contrast to most of the existing terrestrial carbon models, the TEM sub-model of the IGSM 
takes into account an effect of nitrogen limitation on carbon uptake by terrestrial ecosystems. 
Because of that, the MIT IGSM computes smaller carbon uptake by terrestrial ecosystems than 
other models (Plattner et al., 2008; Sokolov et al., 2008a). As a result, the CO2 concentrations 
projected by the MIT IGSM for the SRES scenarios are close to the concentrations produced by 
the ISAM model for the low uptake case (IPCC, 2001). At the same time they are noticeably 
lower than concentrations simulated by the Bern-CC model with low uptake (IPCC, 2001).  
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Figure 5. CO2 concentrations (Shell in red, CCSP in green, SRES in blue). Units are 

molecules of CO2 per million molecules of air. 

4.2 CO2 Equivalent Concentrations of GHGs 

Figure 6 shows the CO2-equivalent concentrations, where the CO2-equivalent is that level of 
CO2 that would produce the same radiative forcing as that from all GHGs (excluding radiative 
forcing from ozone and aerosols). The various scenarios have profiles similar to their CO2-only 
concentrations with the exception of the Shell Scramble scenario, which does not control the 
non-CO2 GHGs. As a result Scramble is closer to SRES A1B and higher than the US CCSP Level 
4 concentrations (recall that Scramble was lower than the Level 4 scenario in its CO2-only 
concentrations).  

The differences between the equivalent CO2 concentrations for the SRES scenarios simulated 
by the MIT IGSM and those calculated from GHGs concentrations reported by the IPCC (2001) 
are larger than their differences in CO2-only concentrations because the MIT IGSM also 
produces higher CH4 and N2O concentrations. The primary reason for these differences is the 
increase of natural CH4 and N2O calculated by the NEM sub-model of the IGSM. In IPCC 
(2001), natural emissions of CH4 and N2O are fixed at a constant level. 
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Figure 6. Total (in CO2 equivalents) concentrations of GHGs (Shell in red, CCSP in green, 

SRES in blue). 

4.3 Total Radiative Forcing 

In addition to the GHGs, the MIT IGSM takes into account the radiative effects of sulfate and 
black carbon aerosol and ozone. Magnitudes and, most importantly, temporal patterns of SO2 and 
BC emissions (see Figures A6 and A7 in Appendix) for the SRES scenarios are very different 
from those in the other scenarios. The SRES scenarios have much higher sulfate aerosol levels in 
the first half of the 21st century. As a result, total radiative forcing for SRES A2 scenario (Figure 
7) is smaller than that for the US CCSP Reference up to year 2080 even though emissions and 
concentrations of GHGs are higher.  
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Figure 7. Net radiative forcing due to all long-lived GHGs, sulfate and black carbon 

aerosols, and ozone (Shell in red, CCSP in green, SRES in blue). Units are watts per 
square meter. 

5.  OCEAN 

5.1 Sea Level Rise Due  

Figure 8 presents the results for sea-level rise (in centimeters) due to thermal expansion and 
melting of mountain glaciers relative to the 2000 level. The SRES A1FI and US CCSP Reference 
scenarios lead to the highest sea-level rises (50-56 cm). The Shell Blueprints without CCS and 
SRES B1 scenarios are very close in their projected sea-level rises (around 31-32 cm) as they 
were in their CO2 concentrations. The same is true for the Level 2 and Blueprints cases, which 
result in around 29 cm of sea-level rise. The US CCSP Level 1 scenario shows the lowest 
increase of around 24 cm by 2100. 
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Figure 8. Sea level rise (cm) due to ocean water thermal expansion and melting of 

mountain glaciers (Shell in red, CCSP in green, SRES in blue). 

Note that these projections of sea-level rises do not include the possible substantial loss of 
water from the Greenland and Antarctic ice sheets. These ice sheet losses did occur during the 
previous interglacial period (Eemian) when polar temperatures were about 3 to 4o C above 
present levels and sea-levels were 4-6m higher than today. Ice sheet sub-models are not included 
in the IGSM at present because of inadequate understanding of the processes that explain current 
rates of melting. It was believed that these ice sheets would be relatively stable for hundreds of 
years but recent evidence has suggested they could melt more rapidly. 

5.2  Oceanic Acidity 

Figure 9 shows the changes in oceanic acidity on the pH scale (a decrease of 1 in this scale 
corresponds to a factor of 10 increase in acidity). The Level 2 and Blueprints cases have pH 
changes that are quite close. The SRES A1FI scenario shows a decrease in oceanic pH from 8 to 
7.63 (which would significantly impact all calcareous phytoplankton that are the base of the 
oceanic food chain), while the Level 1 stabilization scenario reduces the oceanic pH only to 7.91 
(a much smaller impact). 
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Figure 9. Oceanic acidity or hydrogen ion concentration [H+] expressed on the pH scale 
 (= -log10 [H

+]) (Shell in red, CCSP in green, SRES in blue). 

6. GLOBAL MEAN TEMPERATURE 

Figure 10 presents the results for the global mean temperature increases relative to 2000. 
With some minor exceptions, these temperatures follow the net radiative forcing for each 
scenario (Figure 7). Note that the temperature increases are not very different among the 
scenarios up to 2040. However, by 2100 the SRES A1FI scenario shows the highest increase in 
temperature (about 7.0 degrees C), as it was also the highest in CO2-equivalent concentrations. 
The SRES A2 scenario is close to the US CCSP Reference with 5.8 degrees C increase by the 
end of the century, even though the net radiative forcing (Figure 7) is slightly higher than that for 
the US CCSP Reference case in 2100. Also note that CO2-equivalent concentrations in these two 
scenarios are comparable up to 2090, but the SRES A2 temperature increase is lower up to 2090 
due to stronger negative aerosol forcing. 

The SRES A1B and Shell Scramble scenarios are quite close in their temperature increases by 
2100 (around 4.6 degrees C increase). Note that while the SRES A1B net radiative forcing 
(Figure 7) is higher by 2100, it is lower than Shell Scramble before 2050. The US CCSP Level 4 
case results in around 3.8 degrees C increase in temperature. The Level 3 scenario ends up with a 
3.15 degree C increase and SRES B1 and Blueprints without CCS scenario are quite close with 
2.95-2.97 degree C increases. The Level 2 and Blueprints are also close to each other (around 
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2.35-2.5 degrees C increase by 2100 relative to 2000). The US CCSP Level 1 stabilization 
scenario is again the lowest with only 1.8 degrees C increase in temperature. 

Surface warming simulated by the MIT IGSM for the SRES scenarios is noticeably larger 
than the results based on the simulations with the IPCC AR4 AOGCM climate models (Meehl et 
al., 2007). Specifically, surface temperatures averaged over the last decade of the 21st century are 
higher than the 1981-2000 averages by 2.9, 4.5, 5.4 and 6.6 degrees C in the MIT IGSM 
simulations compared to the AR4 values of 1.8, 2.8, 3.4 and 4.0 degrees C for the B1, A1B, A2 
and A1FI SRES scenarios respectively. One source of these differences are higher GHG 
concentrations in the MIT IGSM simulation because of differences in the representation of GHG 
cycles; for example positive feedbacks from increases in the natural sources of CH4 and N2O.  
We simulate the MIT IGSM forced by concentrations from the IPCC (2001) in order to minimize 
this difference and the corresponding temperature increases are 2.5, 3.8, 4.6 and 5.6 degrees C. 
The rest of the differences are explained by the fact that the rates of the heat uptake by the deep 
ocean in most of the AR4 AOGCMs are larger than the median of the distribution obtained by 
Forest et al. (2008) that are used in the simulations described in this paper, and lead to faster 
warming in the IGSM. 
 

 
Figure 10. Increase in the Global Mean Temperature in degrees Centigrade (relative to 

2000) (Shell in red, CCSP in green, SRES in blue). 
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7. CONCLUSIONS 

Different groups employ different philosophies and methodologies to produce emissions 
scenarios. The IPCC SRES exercise generated a range of storylines where some involved a 
strong commitment to the environment and rapid improvement in low carbon technologies (e.g., 
B1) even though there were no explicit climate policies. The CCSP structured the exercise to 
include explicitly a case where there was no climate policy and then four cases with explicit long 
term targets for the world that were met. The Shell exercise included neither a reference scenario 
without climate policy nor explicit long term policy targets but simply imagined different ways 
that energy and climate policy might evolve nationally and internationally, along with other 
forces shaping the energy markets.  

The CCSP and the SRES exercises created the widest range of future emissions projections, 
with the CCSP range being overall somewhat lower in terms of emissions. This difference is 
influenced by the fact that the CCSP scenarios were designed to meet explicit long term policy 
targets. It is not surprising that the Shell scenario range is somewhat narrower as their philosophy 
was to extend from the current situation to what seems likely or possible in terms of energy and 
climate policy. Taking account of the strong concerns about climate change and mounting 
evidence on the dangers of unabated emissions growth a world with no abatement seems 
unlikely, and so the reference CCSP is useful in illustrating the dangers of unabated emissions 
growth, and thus in helping the world to see the great risks in this path before proceeding much 
farther along it. At the same time, it seems politically unlikely that the dramatic near-term world-
wide actions envisioned in the low end CCSP scenarios can be put in place in just a few years. 
While it is interesting to see the implications of such a low end scenario, it seems increasingly 
unlikely that it is achievable. 

The broader implication of these scenarios is that all see substantial continued increases in 
temperature that would create serious environmental concerns. If we rule out the highest (A1FI, 
A2, and Reference) as unthinkable and the lowest (Level 1) as possibly unachievable we arrive at 
a scenario-dependant temperature increase ranging from about 2.5 to 4.5 degrees compared to 
present. Such increases will require considerable adaptation of many human systems and will 
leave some aspects of the earth’s environment irreversibly changed. Particularly at risk are the 
polar regions where warming is amplified. Changes there will bring potentially large disruptions 
to coastal regions due to sea level rise as significant amounts of the land ice sheets melt. This 
was the case in the last interglacial period (Eemian) when temperatures were no higher than 
these projected levels. Thus, the remarkable aspect of these different approaches to scenario 
development drawn from industry, a national government sponsored study, and an 
intergovernmental process is not the differences in detail and philosophy but rather the similar 
picture they paint of a world at risk from climate change even if there is substantial effort to 
reduce emissions from reference conditions.  
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Finally, we emphasize that each of these climate projections has significant uncertainties that 
can span the differences among some of them (see Webster et al., 2003; Sokolov et al., 2008b). 
However, our consistent use of a specific version of the MIT IGSM in this study means that the 
relative ordering (if not the magnitudes) of the impacts projected for each scenario should be 
fairly reliable. 
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Appendix 
Emissions of the major non-CO2 gases (in CO2 equivalents assuming a 100-year time horizon), 
the major primary aerosols (black carbon, BC and organic carbon, OC), aerosol precursors (NOx, 
SO2, NH3) and ozone precursors (NOx, volatile organic carbon (VOC), CO) are provided below. 
These influence the radiative forcing in each scenario causing differences among them in 
addition to those caused simply by their differing CO2 emissions. 
 
 

 
Figure A1. CH4 emissions (Shell in red, CCSP in green, SRES in blue). 
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Figure A2. N2O emissions (Shell in red, CCSP in green, SRES in blue). 
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Figure A3. Perfluorocarbon (PFC) emissions (A1B and A1FI are the same). In CCSP and 

Shell (except for REF and scramble), all emissions go to almost zero in the policy 
cases (Shell in red, CCSP in green, SRES in blue). 
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Figure A4. Hydrofluorocarbon (HFC) emissions (A1B and A1FI are identical). CCSP and 

Shell (except for REF and scramble) are near zero in the policy cases. (Shell in red, 
CCSP in green, SRES in blue). 
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Figure A5. SF6 emissions (A1B and A1FI are identical). CCSP and Shell (except for REF 

and scramble) are near zero in the policy cases. (Shell in red, CCSP in green, SRES in 
blue). 



 
 

23 

0

50

100

150

200

250

2000 2020 2040 2060 2080 2100

M
t 

S
O

2
/y

e
a

r

scramble

blue_excl_ccs

blueprints

REF

Level 4

Level 3

Level 2

Level 1

A1FI

A2

A1B

B1

 
Figure A6. SO2 emissions (Shell in red, CCSP in green, SRES in blue). Units are megatons 

(1012 gm) of SO2 per year. 
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Figure A7. Black Carbon (BC) emissions (Shell in red, CCSP in green, SRES in blue). Units 

are megatons (1012gm) of C per year. 
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Figure A8. Organic Carbon (OC) emissions (Shell in red, CCSP in green, SRES in blue). 

Units are megatons (1012gm) of organic matter per year. 
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Figure A9. CO emissions (Shell in red, CCSP in green, SRES in blue). Units are megatons 

(1012 gm) of CO per year. 
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Figure A10. NOx emissions (Shell in red, CCSP in green, SRES in blue). Units are 

megatons (1012 gm) of NO and NO2 per year. 
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Figure A11. Volatile organic carbon (VOC) emissions (Shell in red, CCSP in green, SRES 

in blue). Units are megatons (1012gm) of volatile organic material per year. 
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Figure A12. NH3 emissions (Shell in red, CCSP in green, SRES in blue). Units are 

megatons (1012gm) of NH3 per year. 
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