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1

Concepts of hydrologic optics

1.1 Introduction

The purpose of the first part of this book is to describe and explain the

behaviour of light in natural waters. The word ‘light’ in common parlance

refers to radiation in that segment of the electromagnetic spectrum –

about 400 to 700 mm to which the human eye is sensitive. Our prime

concern is not with vision but with photosynthesis. Nevertheless, by a

convenient coincidence, the waveband within which plants can photosyn-

thesize corresponds approximately to that of human vision and so we

may legitimately refer to the particular kind of solar radiation with which

we are concerned simply as ‘light’.

Optics is that part of physics which deals with light. Since the behaviour

of light is greatly affected by the nature of the medium through which it is

passing, there are different branches of optics dealing with different kinds

of physical systems. The relations between the different branches of the

subject and of optics to fundamental physical theory are outlined dia-

grammatically in Fig. 1.1. Hydrologic optics is concerned with the behavi-

our of light in aquatic media. It can be subdivided into limnological and

oceanographic optics according to whether fresh, inland or salty, marine

waters are under consideration. Hydrologic optics has, however, up to

now been mainly oceanographic in its orientation.

1.2 The nature of light

Electromagnetic energy occurs in indivisible units referred to as quanta

or photons. Thus a beam of sunlight in air consists of a continual stream

of photons travelling at 3� 108ms�1. The actual numbers of quanta
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involved are very large. In full summer sunlight. for example, 1m2 of

horizontal surface receives about 1021 quanta of visible light per second.

Despite its particulate nature, electromagnetic radiation behaves in some

circumstances as though it has a wave nature. Every photon has a

wavelength, l, and a frequency, n. These are related in accordance with

l ¼ c=v ð1:1Þ

where c is the speed of light. Since c is constant in a given medium, the

greater the wavelength the lower the frequency. If c is expressed in m s�1

and n in cycles s�1, then the wavelength, l, is expressed in metres. For

convenience, however, wavelength is more commonly expressed in nano-

metres, a nanometre (nm) being equal to 10–9m. The energy, ", in a

photon varies with the frequency, and therefore inversely with the wave-

length, the relation being

e ¼ hv ¼ hc=l ð1:2Þ

where h is Planck’s constant and has the value of 6.63� 10–34 J s. Thus, a

photon of wavelength 700 nm from the red end of the photosynthetic

spectrum contains only 57% as much energy as a photon of wavelength

400 nm from the blue end of the spectrum. The actual energy in a photon

of wavelength l nm is given by the relation
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Fig. 1.1 The relationship between hydrologic optics and other branches of

optics (after Preisendorfer, 1976).
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e ¼ ð1988=lÞ � 10�19 J ð1:3Þ

A monochromatic radiation flux expressed in quanta s�1 can thus readily

be converted to J s�1, i.e. to watts (W). Conversely, a radiation flux, F,

expressed in W, can be converted to quanta s�1 using the relation

quanta s�1 ¼ 5:03 Fl� 1015 ð1:4Þ

In the case of radiation covering a broad spectral band, such as for

example the photosynthetic waveband, a simple conversion from

quanta s�1 to W, or vice versa, cannot be carried out accurately since

the value of l varies across the spectral band. If the distribution of quanta

or energy across the spectrum is known, then conversion can be carried

out for a series of relatively narrow wavebands covering the spectral

region of interest and the results summed for the whole waveband.

Alternatively, an approximate conversion factor, which takes into

account the spectral distribution of energy that is likely to occur, may

be used. For solar radiation in the 400 to 700 nm band above the

water surface, Morel and Smith (1974) found that the factor (Q/W)

required to convert W to quanta s�1 was 2.77� 1018 quanta s�1W�1 to

an accuracy of plus or minus a few per cent, regardless of the meteoro-

logical conditions.

As we shall discuss at length in a later section (}6.2) the spectral

distribution of solar radiation under water changes markedly with depth.

Nevertheless, Morel and Smith found that for a wide range of marine

waters the value of Q:W varied by no more than �10% from a mean of

2.5� 1018 quanta s�1W�1. As expected from eqn 1.4, the greater the

proportion of long-wavelength (red) light present, the greater the value

of Q:W. For yellow inland waters with more of the underwater light in the

550 to 700 nm region (see }6.2), by extrapolating the data of Morel and

Smith we arrive at a value of approximately 2.9� 1018 quanta s�1W�1 for

the value of Q:W.

In any medium, light travels more slowly than it does in a vacuum. The

velocity of light in a medium is equal to the velocity of light in a vacuum,

divided by the refractive index of the medium. The refractive index of air

is 1.00028, which for our purposes is not significantly different from that

of a vacuum (exactly 1.0, by definition), and so we may take the velocity

of light in air to be equal to that in a vacuum. The refractive index of

water, although it varies somewhat with temperature, salt concentration

and wavelength of light, may with sufficient accuracy he regarded as

equal to 1.33 for all natural waters. Assuming that the velocity of light

1.2 The nature of light 5
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in a vacuum is 3� 108ms�1, the velocity in water is therefore about

2.25� 108ms�1 The frequency of the radiation remains the same in water

but the wavelength diminishes in proportion to the decrease in velocity.

When referring to monochromatic radiation, the wavelength we shall

attribute to it is that which it has in a vacuum. Because c and l change

in parallel, eqns 1.2, 1.3 and 1.4 are as true in water as they are in a

vacuum: furthermore, when using eqns 1.3 and 1.4. it is the value of the

wavelength in a vacuum which is applicable, even when the calculation is

carried out for underwater light.

1.3 The properties defining the radiation field

If we are to understand the ways in which the prevailing light field

changes with depth in a water body, then we must first consider what

are the essential attributes of a light field in which changes might be

anticipated. The definitions of these attributes, in part, follow the report

of the Working Groups set up by the International Association for the

Physical Sciences of the Ocean (1979), but are also influenced by the more

fundamental analyses given by Preisendorfer (1976). A more recent

account of the definitions and concepts used in hydrologic optics is that

by Mobley (1994).

We shall generally express direction within the light field in terms of the

zenith angle, y (the angle between a given light pencil, i.e. a thin parallel

beam, and the upward vertical), and the azimuth angle, f (the angle

between the vertical plane incorporating the light pencil and some other

specified vertical plane such as the vertical plane of the Sun). In the case

of the upwelling light stream it will sometimes be convenient to express a

direction in terms of the nadir angle, yn (the angle between a given light

pencil and the downward vertical). These angular relations are illustrated

in Fig. 1.2.

Radiant flux, F, is the time rate of flow of radiant energy. It may be

expressed in W (J s�1) or quanta s�1.

Radiant intensity, I, is a measure of the radiant flux per unit solid angle

in a specified direction. The radiant intensity of a source in a given

direction is the radiant flux emitted by a point source, or by an element

of an extended source, in an infinitesimal cone containing the given

direction, divided by that element of solid angle. We can also speak of

radiant intensity at a point in space. This, the field radiant intensity, is the

radiant flux at that point in a specified direction in an infinitesimal cone

6 Concepts of hydrologic optics
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containing the given direction, divided by that element of solid angle.

I has the units W (or quanta s�1) steradian�1.

I ¼ d�=do

If we consider the radiant flux not only per unit solid angle but also per

unit area of a plane at right angles to the direction of flow, then we arrive

at the even more useful concept of radiance, L. Radiance at a point in

space is the radiant flux at that point in a given direction per unit solid

angle per unit area at right angles to the direction of propagation. The

meaning of this field radiance is illustrated in Figs. 1.3a and b. There is

also surface radiance, which is the radiant flux emitted in a given direction

per unit solid angle per unit projected area (apparent unit area, seen from

the viewing direction) of a surface: this is illustrated in Fig. 1.3c. To

indicate that it is a function of direction, i.e. of both zenith and azimuth

angle, radiance is commonly written as L(y, f ). The angular structure of a

light field is expressed in terms of the variation of radiance with y and f.

Radiance has the units W (or quanta s�1)m�2 steradian�1.

horizontal

y

x
q

qn

f

Fig. 1.2 The angles defining direction within a light field. The figure shows a

downward and an upward pencil of light, both, for simplicity, in the same

vertical plane. The downward pencil has zenith angle y; the upward pencil

has nadir angle yn, which is equivalent to a zenith angle of (180� – yn).

Assuming the xy plane is the vertical plane of the Sun, or other reference

vertical plane, then � is the azimuth angle for both light pencils.

1.3 The properties defining the radiation field 7
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Lð�;fÞ ¼ d2F=dS cos � do

Irradiance (at a point of a surface), E, is the radiant flux incident on an

infinitesimal element of a surface, containing the point under consider-

ation, divided by the area of that element. Less rigorously, it may be

defined as the radiant flux per unit area of a surface.* It has the units

Wm�2 or quanta (or photons) s�1m�2, or mol quanta (or photons)

s�1m�2, where 1.0 mol photons is 6.02� 1023 (Avogadro’s number)

photons. One mole of photons is sometimes referred to as an einstein,

but this term is now rarely used.

(a) (b) (c)

D

dw

dA
P

dA dw
L =

d2F

dS cosq dw
L (q, f) = d2F

dw

dS

q

f

dS cosq

dw

dS

f

q

dS cosq

Fig. 1.3 Definition of radiance. (a) Field radiance at a point in space. The

field radiance at P in the direction D is the radiant flux in the small solid

angle surrounding D, passing through the infinitesimal element of area dA at

right angles to D divided by the element of solid angle and the element of

area. (b) Field radiance at a point in a surface. It is often necessary to

consider radiance at a point on a surface, from a specified direction relative

to that surface. dS is the area of a small element of surface. L(y, �) is the

radiance incident on dS at zenith angle y (relative to the normal to the

surface) and azimuth angle �: its value is determined by the radiant flux

directed at dS within the small solid angle, do, centred on the line defined by

y and �. The flux passes perpendicularly across the area dS cos y, which is the

projected area of the element of surface, dS, seen from the direction y, �.
Thus the radiance on a point in a surface, from a given direction, is the

radiant flux in the specified direction per unit solid angle per unit projected

area of the surface. (c) Surface radiance. In the case of a surface that emits

radiation the intensity of the flux leaving the surface in a specified direction is

expressed in terms of the surface radiance, which is defined in the same way as

the field radiance at a point in a surface except that the radiation is considered to

flow away from, rather than on to, the surface.

* Terms such as ‘fluence rate’ or ‘photon fluence rate’, sometimes to be found in the plant
physiological literature, are superfluous and should not be used.

8 Concepts of hydrologic optics
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E ¼ dF=dS

Downward irradiance, Ed, and upward irradiance, Eu, are the values of the

irradiance on the upper and the lower faces, respectively, of a horizontal

plane. Thus, Ed is the irradiance due to the downwelling light stream and

Eu is that due to the upwelling light stream.

The relation between irradiance and radiance can be understood with

the help of Fig. 1.3b. The radiance in the direction defined by y and f is L

(y, f) W (or quanta s�1) per unit projected area per steradian (sr). The

projected area of the element of surface is dS cos y and the corresponding

element of solid angle is do. Therefore the radiant flux on the element

of surface within the solid angle do is L(y, f)dS cos y do. The area of

the element of surface is dS and so the irradiance at that point in

the surface where the element is located, due to radiant flux within do,

is L(y, f) cos y do. The total downward irradiance at that point in the

surface is obtained by integrating with respect to solid angle over

the whole upper hemisphere

Ed ¼

ð

2p

Lð�;fÞ cos � do ð1:5Þ

The total upward irradiance is related to radiance in a similar manner

except that allowance must be made for the fact that cos y is negative for

values of y between 90 and 180 �

Eu ¼ �

ð

�2p

Lð�;fÞ cos � do ð1:6Þ

Alternatively the cosine of the nadir angle, yn (see Fig. 1.2), rather than of

the zenith angle, may be used

Eu ¼

ð

�2p

Lð�n;fÞ cos �n do ð1:7Þ

The �2p subscript is simply to indicate that the integration is carried out

over the 2p sr solid angle in the lower hemisphere.

The net downward irradiance, ~E, is the difference between the down-

ward and the upward irradiance

~E ¼ Ed � Eu ð1:8Þ

It is related to radiance by the eqn

1.3 The properties defining the radiation field 9
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~E ¼

ð

4p

Lð�;fÞ cos �do ð1:9Þ

which integrates the product of radiance and cos y over all directions: the

fact that cos y is negative between 90 and 180 � ensures that the contribu-

tion of upward irradiance is negative in accordance with eqn 1.8. The net

downward irradiance is a measure of the net rate of transfer of energy

downwards at that point in the medium, and as we shall see later is a

concept that can be used to arrive at some valuable conclusions.

The scalar irradiance, E0, is the integral of the radiance distribution at a

point over all directions about the point

Eo ¼

ð

4p

Lð�;fÞdo ð1:10Þ

Scalar irradiance is thus a measure of the radiant intensity at a point,

which treats radiation from all directions equally. In the case of irradi-

ance, on the other hand, the contribution of the radiation flux at different

angles varies in proportion to the cosine of the zenith angle of incidence

of the radiation: a phenomenon based on purely geometrical relations

(Fig. 1.3, eqn 1.5), and sometimes referred to as the Cosine Law. It is

useful to divide the scalar irradiance into a downward and an upward

component. The downward scalar irradiance, E0d, is the integral of the

radiance distribution over the upper hemisphere

E0d ¼

ð

2p

Lð�;fÞdo ð1:11Þ

The upward scalar irradiance is defined in a similar manner for the lower

hemisphere

E0u ¼

ð

�2p

Lð�;fÞdo ð1:12Þ

Scalar irradiance (total, upward, downward) has the same units as

irradiance.

It is always the case in real-life radiation fields that irradiance and

scalar irradiance vary markedly with wavelength across the photosyn-

thetic range. This variation has a considerable bearing on the extent to

which the radiation field can be used for photosynthesis. It is expressed in

terms of the variation in irradiance or scalar irradiance per unit spectral

distance (in units of wavelength or frequency, as appropriate) across the

spectrum. Typical units would be W (or quanta s�1)m�2nm�1.

10 Concepts of hydrologic optics
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If we know the radiance distribution over all angles at a particular

point in a medium then we have a complete description of the

angular structure of the light field. A complete radiance distribution,

however, covering all zenith and azimuth angles at reasonably narrow

intervals, represents a large amount of data: with 5 � angular intervals, for

example, the distribution will consist of 1369 separate radiance values.

A simpler, but still very useful, way of specifying the angular structure of

a light field is in the form of the three average cosines – for downwelling,

upwelling and total light – and the irradiance reflectance.

The average cosine for downwelling light, �d, at a particular point in

the radiation field, may be regarded as the average value, in an infini-

tesimally small volume element at that point in the field, of the cosine of

the zenith angle of all the downwelling photons in the volume element. It

can be calculated by summing (i.e. integrating) for all elements of solid

angle (do) comprising the upper hemisphere, the product of the radiance

in that element of solid angle and the value of cos y (i.e. L(y, f) cos y),

and then dividing by the total radiance originating in that hemisphere.

By inspection of eqns 1.5 and 1.11 it can be seen that

�d ¼ Ed=E0d ð1:13Þ

i.e. the average cosine for downwelling light is equal to the downward

irradiance divided by the downward scalar irradiance. The average cosine

for upwelling light, �u, may be regarded as the average value of the cosine

of the nadir angle of all the upwelling photons at a particular point in the

field. By a similar chain of reasoning to the above, we conclude that �u is

equal to the upward irradiance divided by the upward scalar irradiance

�u ¼ Eu=E0u ð1:14Þ

In the case of the downwelling light stream it is often useful to deal in

terms of the reciprocal of the average downward cosine, referred to by

Preisendorfer (1961) as the distribution function for downwelling light, Dd,

which can be shown712 to be equal to the mean pathlength per vertical

metre traversed, of the downward flux of photons per unit horizontal area

per second. Thus Dd ¼ 1=�d. There is, of course, an analogous distribu-

tion function for the upwelling light stream, defined by Du ¼ 1=�u.

The average cosine, �, for the total light at a particular point in the field

may be regarded as the average value, in an infinitesimally small volume

element at that point in the field, of the cosine of the zenith angle of all the

photons in the volume element. It may be evaluated by integrating the

product of radiance and cos y over all directions and dividing by the total

1.3 The properties defining the radiation field 11
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radiance from all directions. By inspection of eqns 1.8, 1.9 and 1.10, it can

be seen that the average cosine for the total light is equal to the net

downward irradiance divided by the scalar irradiance

� ¼
~E

E0

¼
Ed � Eu

E0

ð1:15Þ

That Ed –Eu should be involved (rather than, say, EdþEu) follows from

the fact that the cosine of the zenith angle is negative for all the upwelling

photons (90 � < y< 180 �). Thus a radiation field consisting of equal

numbers of downwelling photons at y¼ 45 � and upwelling photons at

y¼ 135 � would have � ¼ 0.

Average cosine is often written as �ðzÞ to indicate that it is a function of

the local radiation field at depth z. The total radiation field present in the

water column also has an average cosine, �c, this being the average value

of the cosine of the zenith angle of all the photons present in the water

column at a given time.716 In principle it could be evaluated by multiply-

ing the value of �ðzÞ in each depth interval by the proportion of the total

water column radiant energy occurring in that depth interval, and then

summing to obtain the average cosine for the whole water column, i.e. we

would be making use of the relationship

�c ¼

ð1

0

�ðzÞ
UðzÞ

Ð1
0

UðzÞdz

" #

dz ð1:16Þ

where U(z) is the radiant energy density at depth z. The radiant energy

density at depth z is equal to the scalar irradiance at that depth divided by

the speed of light in water, cw

UðzÞ ¼ E0ðzÞ=cw ð1:17Þ

Making use of the fact that �ðzÞ at any depth is equal to the net down-

ward irradiance divided by the scalar irradiance (eqn 1.15), then substi-

tuting for �ðzÞ and U(z) in eqn 1.16 and cancelling out, we obtain

�c ¼

ð1

0

½EdðzÞ � EuðzÞ�dz
ð1

0

E0ðzÞdz

ð1:18Þ

Taking eqns 1.16 to 1.18 to constitute an alternative definition of �c, then

an appropriate alternative name for the average cosine of all the photons

in the water column would be the integral average cosine of the under-

water light field.

12 Concepts of hydrologic optics
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The remaining parameter that provides information about the angular

structure of the light field is the irradiance reflectance (sometimes called

the irradiance ratio), R. It is the ratio of the upward to the downward

irradiance at a given point in the field

R ¼ Eu=Ed ð1:19Þ

In any absorbing and scattering medium, such as sea or inland water, all

these properties of the light field change in value with depth (for which we

use the symbol z): the change might typically be a decrease, as in the case of

irradiance, or an increase, as in the case of reflectance. It is sometimes

useful to have a measure of the rate of change of any given property with

depth. All the properties withwhichwe have dealt that have the dimensions

of radiant flux per unit area, diminish in value, as we shall see later, in an

approximately exponential manner with depth. It is convenient with these

properties to specify the rate of change of the logarithm of the value with

depth since this will be approximately the same at all depths. In this way we

may define the vertical attenuation coefficient for downward irradiance

Kd ¼ �
d lnEd

dz
¼ �

1

Ed

dEd

dz
ð1:20Þ

upward irradiance

Ku ¼ �
d lnEu

dz
¼ �

1

Eu

dEu

dz
ð1:21Þ

net downward irradiance

KE ¼ �
d lnðEd � EuÞ

dz
¼ �

1

ðEd � EuÞ

dðEd � EuÞ

dz
ð1:22Þ

scalar irradiance

K0 ¼ �
d lnE0

dz
¼ �

1

Eo

dE0

dz
ð1:23Þ

radiance

Kð�;fÞ ¼ �
d ln Lð�;fÞ

dz
¼ �

1

Lð�;fÞ

dLð�;fÞ

dz
ð1:24Þ

In recognition of the fact that the values of these vertical attenuation

coefficients are to some extent a function of depth they may sometimes be

written in the form K(z). For practical oceanographic and limnological

1.3 The properties defining the radiation field 13
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purposes it is often desirable to have an estimate of the average value of a

vertical attenuation coefficient in that upper layer (the euphotic zone)

where light intensity is sufficient for significant photosynthesis to take

place. A commonly used procedure is to calculate the linear regression

coefficient of ln E(z) with respect to depth over the depth interval of

interest (}5.1). Choice of the most appropriate depth interval is inavoid-

ably somewhat arbitrary. An alternative approach is to use the irradiance

values themselves to weight the estimates of the irradiance attenuation

coefficients.717 This yields K values applicable to that part of the water

column where most of the energy is attenuated. If we indicate the irradi-

ance-weighted vertical attenuation coefficient by wK(av) then

wKðavÞ ¼

ð1

0

KðzÞEðzÞdz
ð1

0

EðzÞdz

ð1:25Þ

whereE(z) can beEd(z),Eu(z), ~EðzÞ, orE0(z) andK(z) can beKd(z),Ku(z),KE(z)

or K0(z), respectively. The meaning of eqn 1.25 is that when we calculate an

average value of K by integrating over depth, at every depth the localized

value of K(z) is weighted by the appropriate value of the relevant type of

irradiance at that depth. The integrated product of K(z) and E(z) over all

depths is divided by the integrated irradiance over all depths.

1.4 The inherent optical properties

There are only two things that can happen to photons within water: they

can be absorbed or they can be scattered. Thus if we are to understand

what happens to solar radiation as it passes into any given water body, we

need some measure of the extent to which that water absorbs and scatters

light. The absorption and scattering properties of the aquatic medium for

light of any given wavelength are specified in terms of the absorption

coefficient, the scattering coefficient and the volume scattering function.

These have been referred to by Preisendorfer (1961) as inherent optical

properties (IOP), because their magnitudes depend only on the substances

comprising the aquatic medium and not on the geometric structure of the

light fields that may pervade it. They are defined with the help of an

imaginary, infinitesimally thin, plane parallel layer of medium, illumin-

ated at right angles by a parallel beam of monochromatic light (Fig. 1.4).

Some of the incident light is absorbed by the thin layer. Some is

14 Concepts of hydrologic optics
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scattered – that is, caused to diverge from its original path. The fraction of

the incident flux that is absorbed, divided by the thickness of the layer, is

the absorption coefficient, a. The fraction of the incident flux that is scat-

tered, divided by the thickness of the layer, is the scattering coefficient, b.

To express the definitions quantitatively we make use of the quantities

absorptance, A, and scatterance, B. If F0 is the radiant flux (energy or

quanta per unit time) incident in the form of a parallel beam on some

physical system, Fa is the radiant flux absorbed by the system, and Fb is

the radiant flux scattered by the system. Then

A ¼ Fa=F0 ð1:26Þ

and

B ¼ Fb=F0 ð1:27Þ

i.e. absorptance and scatterance are the fractions of the radiant flux lost

from the incident beam, by absorption and scattering, respectively. The

sum of absorptance and scatterance is referred to as attenuance, C: it is the

fraction of the radiant flux lost from the incident beam by absorption and

scattering combined. In the case of the infinitesimally thin layer, thickness

Dr, we represent the very small fractions of the incident flux that are lost

by absorption and scattering as DA and DB, respectively. Then

thin layer

Fig. 1.4 Interaction of a beam of light with a thin layer of aquatic medium.

Of the light that is not absorbed, most is transmitted without deviation from

its original path: some light is scattered, mainly in a forward direction.
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a ¼ DA=Dr ð1:28Þ

and

b ¼ DB=Dr ð1:29Þ

An additional inherent optical property that we may now define is the

beam attenuation coefficient, c. It is given by

c ¼ aþ b ð1:30Þ

and is the fraction of the incident flux that is absorbed and scattered,

divided by the thickness of the layer. If the very small fraction of the

incident flux that is lost by absorption and scattering combined is given

the symbol DC (where DC ¼ DA þ DB) then

c ¼ DC=Dr ð1:31Þ

The absorption, scattering and beam attenuation coefficients all have

units of 1/length, and are normally expressed in m�1.

In the real worldwe cannot carry outmeasurements on infinitesimally thin

layers, and so if we are to determine the values of a, b and c we need

expressions that relate these coefficients to the absorptance, scatterance and

beam attenuance of layers of finite thickness. Consider amedium illuminated

perpendicularly with a thin parallel beam of radiant flux, F0. As the beam

passes through, it loses intensity by absorption and scattering. Consider now

an infinitesimally thin layer, thickness Dr, within the medium at a depth, r,

where the radiant flux in the beamhas diminished toF.The change in radiant

flux in passing through Dr is DF. The attenuance of the thin layer is

DC ¼ �DF=F

(the negative sign is necessary since DF must be negative)

DF=F ¼ �cDr

Integrating between 0 and r we obtain

ln
�

�0

¼ �cr ð1:32Þ

or

F ¼ F0 e�cr ð1:33Þ

indicating that the radiant flux diminishes exponentially with distance

along the path of the beam. Equation 1.32 may be rewritten
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c ¼
1

r
ln
�0

�
ð1:34Þ

or

c ¼ �
1

r
lnð1� CÞ ð1:35Þ

The value of the beam attenuation coefficient, c, can therefore, using eqn

1.34 or 1.35, be obtained from measurements of the diminution in inten-

sity of a parallel beam passing through a known pathlength of medium, r.

The theoretical basis for the measurement of the absorption and scat-

tering coefficients is less simple. In a medium with absorption but negli-

gible scattering, the relation

a ¼ �
1

r
ln 1� Að Þ ð1:36Þ

holds, and in a medium with scattering but negligible absorption, the

relation

b ¼ �
1

r
ln 1� Bð Þ ð1:37Þ

holds, but in any medium that both absorbs and scatters light to a

significant extent, neither relation is true. This can readily be seen by

considering the application of these equations to such a medium.

In the case of eqn 1.37 some of the measuring beam will be removed by

absorption within the pathlength r before it has had the opportunity to be

scattered, and so the amount of light scattered, B, will be lower than that

required to satisfy the equation. Similarly, A will have a value lower than

that required to satisfy eqn 1.36 since some of the light will be removed

from the measuring beam by scattering before it has had the chance to

be absorbed.

In order to actually measure a or b these problems must be circum-

vented. In the case of the absorption coefficient, it is possible to arrange

that most of the light scattered from the measuring beam still passes

through approximately the same pathlength of medium and is collected

by the detection system. Thus the contribution of scattering to total attenu-

ation is made very small and eqn 1.36 may be used. In the case of the

scattering coefficient there is no instrumental way of avoiding the losses

due to absorption and so the absorption must be determined separately

and appropriate corrections made to the scattering data. We shall consider

ways of measuring a and b in more detail later (}}3.2 and 4.2).
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The way in which scattering affects the penetration of light into the

medium depends not only on the value of the scattering coefficient but

also on the angular distribution of the scattered flux resulting from the

primary scattering process. This angular distribution has a characteristic

shape for any given medium and is specified in terms of the volume

scattering function, b(y). This is defined as the radiant intensity in a given

direction from a volume element, dV illuminated by a parallel beam of

light, per unit of irradiance on the cross-section of the volume, and per

unit volume (Fig. 1.5a). The definition is usually expressed mathematic-

ally in the form

�ð�Þ ¼ dIð�Þ=E dV ð1:38Þ

Since, from the definitions in }1.3

dIð�Þ ¼ dFð�Þ=do

and

E ¼ F0=dS

where dF(y) is the radiant flux in the element of solid angle do, oriented

at angle y to the beam, and F0 is the flux incident on the cross-sectional

area, dS, and since

dV ¼ dS:dr

where dr is the thickness of the volume element, then we may write

�ð�Þ ¼
d�ð�Þ

�0

1

d odr
ð1:39Þ

The volume scattering function has the units m�1 sr�1.

Light scattering from a parallel light beam passing through a thin layer

of medium is radially symmetrical around the direction of the beam.

Thus, the light scattered at angle y should be thought of as a cone with

half-angle y, rather than as a pencil of light (Fig. 1.5b).

From eqn 1.39 we see that b(y) is the radiant flux per unit solid

angle scattered in the direction y, per unit pathlength in the medium,

expressed as a proportion of the incident flux. The angular interval y to y

þDy corresponds to an element of solid angle equal to 2p sin y Dy

(Fig. 1.5b) and so the proportion of the incident radiant flux scattered

(per unit pathlength) in this angular interval is b(y) 2p sin y Dy.

To obtain the proportion of the incident flux that is scattered in
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q

∆q

sin q

E

q

d/ (q)

dV

dr

(a)

(b)

Fig. 1.5 The geometrical relations underlying the volume scattering func-

tion. (a) A parallel light beam of irradiance E and cross-sectional area dA

passes through a thin layer of medium, thickness dr. The illuminated element

of volume is dV. dI(y) is the radiant intensity due to light scattered at angle y.

(b) The point at which the light beam passes through the thin layer of

medium can be imagined as being at the centre of a sphere of unit radius.

The light scattered between y and y þ Dy illuminates a circular strip, radius

sin y and width Dy, around the surface of the sphere. The area of the strip is

2p sin y Dy, which is equivalent to the solid angle (in steradians) correspond-

ing to the angular interval, Dy.
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all directions per unit pathlength – by definition, equal to the

scattering coefficient – we must integrate over the angular range y¼ 0 �

to y¼ 180 �

b ¼ 2p

ðp

0

�ð�Þ sin �d� ¼

ð

4p

�ð�Þdo ð1:40Þ

Thus an alternative definition of the scattering coefficient is the integral of

the volume scattering function over all directions.

It is frequently useful to distinguish between scattering in a for-

ward direction and that in a backward direction. We therefore parti-

tion the total scattering coefficient, b, into a forward scattering

coefficient, bf, relating to light scattered from the beam in a forward

direction, and a backward scattering coefficient (or simply, backscatter-

ing coefficient) bb, relating to light scattered from the beam in a back-

ward direction

b ¼ bb þ bf ð1:41Þ

We may also write

bf ¼ 2p

ðp=2

0

�ð�Þ sin �d� ð1:42Þ

bb ¼ 2p

ðp

p=2

�ð�Þ sin �d� ð1:43Þ

The variation of b(y) with y tells us the absolute amount of scattering at

different angles, per unit pathlength in a given medium. If we wish to

compare the shape of the angular distribution of scattering in different

media separately from the absolute amount of scattering that occurs, then

it is convenient to use the normalized volume scattering function, ~�ð�Þ,

sometimes called the scattering phase function, which is that function

(units sr�1) obtained by dividing the volume scattering function by the

total scattering coefficient

~�ð�Þ ¼ �ð�Þ=b ð1:44Þ

The integral of ~�ð�Þover all solid angles is equal to 1. The integral of
~�ð�Þup to any given value of y is the proportion of the total scattering that

occurs in the angular interval between 0 � and that value of y. We can also

define normalized forward scattering and backward scattering

coefficients, ~bf and ~bb, as the proportions of the total scattering in

forwards and backwards directions, respectively
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~bf ¼ bf=b ð1:45Þ

~bb ¼ bb=b ð1:46Þ

Just as it is useful sometimes to express the angular structure of a light

field in terms of a single parameter – its average cosine ð�Þ – so it can also

be useful in the case of the scattering phase function to have a single

parameter that provides some indication of its shape. Such a parameter is

the average cosine of scattering, �s, which can be thought of as the average

cosine of the singly scattered light field. It is also sometimes referred to as

the asymmetry factor, and given the symbol, g. Its value, for any given

volume scattering function, may be calculated712 from

�s ¼

ð

4p

�ð�Þ cos �do
ð

4p

�ð�Þdo

ð1:47Þ

or (using eqn 1.44 and the fact that the integral of ~�ð�Þ over 4p is 1) from

�s ¼

ð

4p

~�ð�Þ cos �do ð1:48Þ

1.5 Apparent and quasi-inherent optical properties

The vertical attenuation coefficients for radiance, irradiance and scalar

irradiance are, strictly speaking, properties of the radiation field since, by

definition, each of them is the logarithmic derivative with respect to depth of

the radiometric quantity in question. Nevertheless experience has shown

that their values are largely determined by the inherent optical properties of

the aquaticmedium and are not verymuch altered by changes in the incident

radiation field such as a change in solar elevation.59 For example, if a

particular water body is found to have a high value of Kd then we expect it

to have approximately the same high Kd tomorrow, or next week, or at any

time of the day, so long as the composition of the water remains about the same.

Vertical attenuation coefficients, such as Kd, are thus commonly used,

and thought of, by oceanographers and limnologists as though they

are optical properties belonging to the water, properties that are a

direct measure of the ability of that water to bring about a diminu-

tion in the appropriate radiometric quantity with depth. Furthermore

they have the same units (m�1) as the inherent optical properties a, b
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and c. In recognition of these useful aspects of the various K functions,

Preisendorfer (1961) suggested that they be classified as apparent optical

properties (AOP) and we shall so treat them in this book. The reflectance,

R, is also often treated as an apparent optical property of water bodies.

The two fundamental inherent optical properties – the coefficients for

absorption and scattering – are, as we saw earlier, defined in terms of the

behaviour of a parallel beam of light incident upon a thin layer of

medium. Analogous coefficients can be defined for incident light streams

having any specified angular distribution. In particular, such coefficients

can be defined for incident light streams corresponding to the upwelling

and downwelling streams that exist at particular depths in real water

bodies. We shall refer to these as the diffuse absorption and scattering

coefficients for the upwelling or downwelling light streams at a given

depth. Although related to the normal coefficients, the values of the

diffuse coefficients are a function of the local radiance distribution, and

therefore of depth.

The diffuse absorption coefficient for the downwelling light stream

at depth z, ad(z), is the proportion of the incident radiant flux that

would be absorbed from the downwelling stream by an infinitesimally

thin horizontal plane parallel layer at that depth, divided by the thick-

ness of the layer. The diffuse absorption coefficient for the upwelling

stream, au(z), is defined in a similar way. Absorption of a diffuse

light stream within the thin layer will be greater than absorption of a

normally incident parallel beam because the pathlengths of the photons

will be in proportion to 1=�d and 1=�u, respectively. The diffuse absorp-

tion coefficients are therefore related to the normal absorption coeffi-

cients by

adðzÞ ¼
a

�dðzÞ
ð1:49Þ

auðzÞ ¼
a

�uðzÞ
ð1:50Þ

where �dðzÞ and �uðzÞ are the values of �d and �u that exist at depth z.

So far as scattering of the upwelling and downwelling light streams is

concerned, it is mainly the backward scattering component that is of

importance. The diffuse backscattering coefficient for the downwelling

stream at depth z, bbd(z), is the proportion of the incident radiant

flux from the downwelling stream that would be scattered backwards

(i.e. upwards) by an infinitesimally thin, horizontal plane parallel

layer at that depth, divided by the thickness of the layer: bbu(z), the
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corresponding coefficient for the upwelling stream is defined in the same

way in terms of the light scattered downwards again from that stream.

Diffuse total (bd(z), bu(z)) and forward (bfd(z), bfu(z)) scattering coeffi-

cients for the downwelling and upwelling streams can be defined in a

similar manner. The following relations hold

bdðzÞ ¼ b=�dðzÞ; buðzÞ ¼ b=�uðzÞ
bdðzÞ ¼ bfdðzÞ þ bbdðzÞ; buðzÞ ¼ bfuðzÞ þ bbuðzÞ

The relation between a diffuse backscattering coefficient and the normal

backscattering coefficient, bb, is not simple but may be calculated from

the volume scattering function and the radiance distribution existing at

depth z. The calculation procedure is discussed later (} 4.2).

Preisendorfer (1961) has classified the diffuse absorption and scattering

coefficients as hybrid optical properties on the grounds that they are

derived both from the inherent optical properties and certain properties

of the radiation field. I prefer the term quasi-inherent optical properties, on

the grounds that it more clearly indicates the close relation between these

properties and the inherent optical properties. Both sets of properties

have precisely the same kind of definition: they differ only in the charac-

teristics of the light flux that is imagined to be incident upon the thin layer

of medium.

The important quasi-inherent optical property, bbd(z), can be linked

with the two apparent optical properties, Kd and R, with the help of one

more optical property, k(z), which is the average vertical attenuation

coefficient in upward travel from their first point of upward scattering,

of all the upwelling photons received at depth z.710 k(z) must not be

confused with, and is in fact much greater than, Ku(z), the vertical attenu-

ation coefficient (with respect to depth increasing downward) of the

upwelling light stream. Using k(z) we link the apparent and the quasi-

inherent optical properties in the relation

RðzÞ �
bbdðzÞ

KdðzÞ þ kðzÞ
ð1:51Þ

At depths where the asymptotic radiance distribution is established (see

} 6.6) this relationship holds exactly. Monte Carlo modelling of the under-

water light field for a range of optical water types710 has shown that k is

approximately linearly related to Kd, the relationship at zm (a depth at

which irradiance is 10% of the subsurface value) being

kðzmÞ � 2:5 KdðzmÞ ð1:52Þ
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1.6 Optical depth

As we have already noted, but will discuss more fully later, the downward

irradiance diminishes in an approximately exponential manner with

depth. This may be expressed by the equation

EdðzÞ ¼ Edð0Þe
�KdZ ð1:53Þ

where Ed(z) and Ed(0) are the values of downward irradiance at zm depth,

and just below the surface, respectively, and Kd is the average value of the

vertical attenuation coefficient over the depth interval 0 to zm. We shall

now define the optical depth, z, by the eqn

z ¼ Kdz ð1:54Þ

It can be seen that a specified optical depth will correspond to different

physical depths but to the same overall diminution of irradiance, in waters

of differing optical properties. Thus in a coloured turbid water with a high

Kd, a given optical depth will correspond to a much smaller actual depth

than in a clear colourless water with a low Kd. Optical depth, z, as defined

here is distinct from attenuation length, t (sometimes also called optical

depth or optical distance), which is the geometrical length of a path

multiplied by the beam attenuation coefficient (c) associated with the path.

Optical depths of particular interest in the context of primary production

are those corresponding to attenuation of downward irradiance to 10% and

1%of the subsurface values: these are z¼ 2.3 and z¼ 4.6, respectively. These

optical depths correspond to the mid-point and the lower limit of the

euphotic zone, within which significant photosynthesis occurs.

1.7 Radiative transfer theory

Having defined the properties of the light field and the optical properties

of the medium we are now in a position to ask whether it is possible to

arrive, on purely theoretical grounds, at any relations between them.

Although, given a certain incident light field, the characteristics of

the underwater light field are uniquely determined by the properties

of the medium, it is nevertheless true that explicit, all-embracing analyt-

ical relations, expressing the characteristics of the field in terms of the

inherent optical properties of the medium, have not yet been derived.

Given the complexity of the shape of the volume scattering function in

natural waters (see Chapter 4), it may be that this will never be achieved.
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It is, however, possible to arrive at a useful expression relating the

absorption coefficient to the average cosine and the vertical attenuation

coefficient for net downward irradiance. In addition, relations have been

derived between certain properties of the field and the diffuse optical

properties. These various relations are all arrived at by making use of

the equation of transfer for radiance. This describes the manner in which

radiance varies with distance along any specified path at a specified point

in the medium.

Assuming a horizontally stratified water body (i.e. with properties

everywhere constant at a given depth), with a constant input of mono-

chromatic unpolarized radiation at the surface, and ignoring fluorescent

emission within the water, the equation may be written

dLðz; �;fÞ

dr
¼ �cðzÞLðz; �;fÞ þ L�ðz; �;fÞ ð1:55Þ

The term on the left is the rate of change of radiance with distance, r,

along the path specified by zenith and azimuthal angles y and f, at depth

z. The net rate of change is the resultant of two opposing processes: loss

by attenuation along the direction of travel (c(z) being the value of the

beam attenuation coefficient at depth z), and gain by scattering (along

the path dr) of light initially travelling in other directions (y0, f0) into the

direction y, f (Fig. 1.6). This latter term is determined by the volume

scattering function of the medium at depth z (which we write b(z, y, f; y0,

f0) to indicate that the scattering angle is the angle between the two

directions y, f and y0, f0) and by the distribution of radiance, L(z, y0, f0).

Each element of irradiance, L(z, y0, f0)do(y0, f0) (where do(y0, f0) is an

element of solid angle forming an infinitesimal cone containing the direc-

tion y0, f0), incident on the volume element along dr gives rise to some

scattered radiance in the direction y, f. The total radiance derived in this

way is given by

L�ðz; �;fÞ ¼

ð

2p

bðz; �;f; �0;f0Þ Lðz; �0;f0Þ doð�0;f0Þ ð1:56Þ

If we are interested in the variation of radiance in the direction y, f as a

function of depth, then since dr ¼ dz/cos y, we may rewrite eqn 1.55 as

cos �
dLðz; �;fÞ

dz
¼ �cðzÞLðz; �;fÞ þ L�ðz; �;fÞ ð1:57Þ

By integrating each term of this equation over all angles
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ð

4p

cos �
dLðz; �;fÞ

dz
do ¼ �

ð

4p

cðzÞLðz; �;fÞdoþ

ð

4p

L�ðz; �;fÞdo

we arrive at the relation

d~E

dz
¼ �cE0 þ bE0 ¼ �aE0 ð1:58Þ

originally derived by Gershun (1936).

It follows that

a ¼ KE

~E

E0

ð1:59Þ

and

a ¼ KE� ð1:60Þ

Thus we have arrived at a relation between an inherent optical pro-

perty and two of the properties of the field. Equation 1.60, as we shall

see later (} 3.2), can be used as the basis for determining the absorption

coefficient of a natural water from in situ irradiance and scalar irradi-

ance measurements.

Loss by

scattering

out of path

Gain by scattering

into path

(q, f)

(q ′, f ′)

Loss by

absorption

Fig. 1.6 The processes underlying the equation of transfer of radiance. A light

beam passing through a distance, dr, of medium, in the direction y, �, loses
some photons by scattering out of the path and some by absorption by the

medium along the path, but also acquires new photons by scattering of light

initially travelling in other directions (y’, �0) into the direction y, �.
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Exploration of the properties of irradiance-weighted vertical attenu-

ation coefficients (defined in }1.3, above) has shown717 that the following

relationships, analogous to the Gershun equation, also exist

wKEðavÞ ¼
a

�c

ð1:61Þ

and

wK0ðavÞ ¼
a

�ð0Þ
ð1:62Þ

where wKEðavÞ and wK0ðavÞare the irradiance-weighted vertical attenu-

ation coefficients for net downward and scalar irradiances, respectively,

�c is the integral average cosine for the whole water column, and �ð0Þ is

the average cosine for the light field just below the water surface.

Preisendorfer (1961) has used the equation of transfer to arrive at a set

of relations between certain properties of the field and the diffuse absorp-

tion and scattering coefficients. One of these, an expression for the verti-

cal attenuation coefficient for downward irradiance,

KdðzÞ ¼ adðzÞ þ bbdðzÞ � bbuðzÞRðzÞ ð1:63Þ

we will later (} 6.7) find of assistance in understanding the relative import-

ance of the different processes underlying the diminution of irradiance

with depth.

1.7 Radiative transfer theory 27

Downloaded from Cambridge Books Online from within the IP domain of the University of California on Wed May 20 22:05:44 BST 2015.
http://dx.doi.org/10.1017/CBO9781139168212.003

Cambridge Books Online © Cambridge University Press, 2015


	Chapter 1: Concepts of hydrologic optics
	1.1 Introduction
	1.2 The nature of light
	1.3 The properties defining the radiation field
	1.4 The inherent optical properties
	1.5 Apparent and quasi-inherent optical properties
	1.6 Optical depth
	1.7 Radiative transfer theory


