IPSL-CCM2 Coupled Model

Climate - Carbon coupled simulations

[<u>Overview</u>][<u>Publications</u>][<u>Runs</u> Description][<u>Feedback Analysis</u>][<u>Figures</u>][Data][<u>Model Description</u>][<u>Coupling strategy</u>][<u>Contact</u>]

Overview

Atmospheric CO_2 is expected to increase in the coming decades due to emissions of CO_2 by fossil fuel burning and land use changes. The rate of increase depends on anthropogenic emissions and on the capacity of the oceans and the land biosphere to take up CO_2 . Current climate models predict a mean temperature increase of 1 to 4.5° C compared to the present for a doubling of atmospheric CO_2 . Recent carbon cycle studies suggest that such climate change may reduce the uptake of CO_2 by the ocean or the land biosphere. It is thus necessary to account for the climate impact on the carbon cycle when translating anthropogenic emissions into CO_2 concentrations, which has not been done yet.

In order to address the climate-carbon cycle feedback, we coupled the AOGCM climate model from IPSL with a land and an ocean carbon cycle model. The carbon cycle and climate model (COAGCM) is forced by emissions, as in the real world, and the atmospheric CO_2 growth rate is calculated as the difference between prescribed anthropogenic emissions and calculated land and ocean uptakes. Therefore, CO_2 and climate are both predicted by the COAGCM.

Two climate-carbon coupled runs are performed, the control run with no anthropogenic emissions, and the scenario run where emissions are taken from IPCC (observed for 1850-1995 and IPCC SRES98 A2 scenario onward) for the 1850-2100 period. <u>Additional</u> runs are perfromed for feedback studies.

Our model reproduces the observed global mean temperature changes and the growth rate of atmospheric CO_2 for the period 1860-2000. For the future, we simulate that the climate change due to CO_2 increase will reduce the land carbon uptake, leaving a larger fraction of anthropogenic CO_2 in the atmosphere. By 2100, we estimate that atmospheric CO_2 will be 18% higher due to the climate change impact on the carbon cycle. When analysing the climate-carbon cycle feedback and the respective

role of land and ocean, we show that the overall effect results from two antagonistic mechanisms. Climate change reduces land carbon uptake. However, this accelerates the atmospheric $\rm CO_2$ increase which, in turn, enhances ocean and land uptake of $\rm CO_2$.

More (Models, Spin up, Forcing, Control run)

A review of <u>Sinks for Anthropogenic Carbon</u> in <u>Physics Today</u> with some of ours <u>results</u>

Publications

- IPSL-Hadley comparison paper *Tellus*, april 2003, 55B (2), pp. 692-700
 How positive is the feedback between climate change and the carbon cycle.
 Friedlingstein, P., J.-L. Dufresne, P.M. Cox, and P. Rayner (pdf) ,
- On-line simulation paper

Effects of climate change due to CO2 increase on land and ocean carbon uptake.

Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, L. Fairhead, H. LeTreut, P. Monfray Geophys. Res. Lett., **29**(10), 10.1029/2001GL013777, 23 May 2002 Text and figures: (pdf), (ps) "© 2002 American Geophysical Union. Further reproduction or electronic distribution is not permitted."

Off-line simulation paper
Positive feedback between future climate change and the carbon cycle.
Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J,
Geophys. Res. Lett., Vol.28, No.8, pp. 1543-1546, Apr 2001
texte in pdf_or in ps file.
"© 2001 American Geophysical Union. Further reproduction or electronic distribution is not permitted."

• Potential impact of climate change on marine export production. Bopp L, Monfray P, Aumont O, Dufresne JL, Le Treut H, Madec G, Terray L, Orr JC, *Global Biogeochemical Cycles,* Vol. 15, No. 1, pp. 81-99, Mar 2001 pdf file of <u>texte</u> and <u>figures</u>

• Atmosphere-Biosphere feedbacks paper (for Bonn meeting)

Bonn Paper

• Climate-carbon feedbacks associated with CO2 anthropogenic emissions using the IPSL coupled model: an amplification effect?

J.L. Dufresne, P. Friedlingstein <u>Lettre IGBP-France</u>, N.11, Novembre 2000 Texte in <u>pdf</u> or in <u>ps</u> file. Texte en français <u>ici</u> ou au <u>CNRS</u>

Runs Description

run code	run name	CO2 emission	CO2 concentration	coupling between carbon and climate
<u>LF7</u>	control	fixed, no emission	computed	coupled
<u>LF8</u>	scenario	fixed, anthropogenic emissions	computed	coupled
LF9	prescribed climate	fixed, anthropogenic emissions	computed	uncoupled, climate from the control run
LFA	_	fixed, no emission	computed	uncoupled, climate from the scenario run
LFB	prescribed CO2	inferred from carbon balance	taken from the fixed climate run	uncoupled, climate from the scenario run

- Anthropogenic emissions follow estimation for the historical period and the IPCC SRES98-A2 scenario after year 2000.
- CO2 is the only greenhouse gaz considered.
- Model Description
- Schematic of the four simulations. Each simulation is associated to a given color. The boxes exhibit a specific variable or subpart of the earth system. Box color indicates which simulation provides the data. <u>gif</u> or <u>postscript</u> files

Feedback Analysis

run difference	Name	CO2 emission	CO2 concentration	Climate	Feedback mechanism
LF8-LF7	Coupled change	_	_	_	coupled climate change and CO2 change du to CO2 emission
LF9-LF7	CO2 change without climate feedback	_	_	same	CO2 change du to CO2 emission without the influence of climate change du to CO2 emission
LF8-LF9	Climate impact on CO2	same	_	_	overall impact of climate change (du to CO2 emission) on CO2 uptake
LFB-LF9	Direct climate impact on CO2	_	same	-	direct impact of climate on CO2 uptake, du to CO2 emission
LF8-LFB	Indirect climate impact on CO2	_	_	same	indirect impact of climate on CO2 uptake, du to CO2 emission. (i.e. impact

	of CO2 increase du to climate change).
--	---

Figures

[<u>Time Series</u>], [<u>Zonal Mean</u>], [<u>Maps</u>], [<u>EOF Analysis</u>], [<u>Others</u>]

Time Series (1860-2100)

Atmospheric CO2 and global mean surface temperature time series for the scenario run, for the control run, and comparison with observations
Séries temporelles de la concentration de CO2 et de la température moyenne de la surface de la Terre, pour la simulation de controle (pas d'émission de CO2 dues aux activités humaines), pour la simulation scenario, et observées

<u>gif</u>, <u>ps</u>, <u>jpeg</u>files

- Mean summer surface temperature over $\ensuremath{\mathsf{France}}$ time series for the scenario run

- Série temporelle de la **température éstivale moyenne, en France** <u>gif</u>, <u>eps</u>, <u>ppt</u>, <u>pdf</u> files
- Carbon change time series :
 - Carbon budget

Left axis (gTC) : red: emissions, green: biosphere, dark blue: ocean

Right axis (ppmv) : light blue : simulated atmospheric CO2, black : observed atmospheric CO2 [gif] or [ps] files

• Carbon budget (IPSL compared with Hadley Center)

Color scheme as above. [gif] or [ps] files

• Climate impact :

- (a) on Atmospheric CO2. [gif] or [ps] files
- (b) on Carbon budget [gif] or [ps] files
- (c) on Carbon uptakes [gif] or [ps] files
- Direct and indirect climate effect : Distribution of the CO2 anthropogenic emission between the three carbon reservoir (atmosphere, biosphere, ocean). On the right side of the figure are zoomed the difference between the simulations results, and illustrated in terms of the two different component of the climate change impact on the carbon cycle : direct climate impact and indirect impact through the climate driven atmospheric CO2 change.

[gif] or [ps] files

- Climate change time series :
 - Sea-ice :
 - Maximum (thick line) and minimum (thin line) sea-ice extent, for the control (solid line) and the scenario (dashed line) run, in Artic and Antarctic. Five year running mean. <u>gif</u> or <u>eps</u> files
 - Relative change, respective to the control run, of the sea-ice volume, sea-ice extent and the seasonal cycle of the sea-ice extent :

in Artic <u>gif</u> or <u>eps</u> files in Antarctic <u>gif</u> or <u>eps</u> files

- Feedbacks
 - sensibilities (dC/dT and dT/dC), gain and amplification factor for offline (solid line) and online (dashed line) simulations <u>gif</u> or <u>postscript</u> files

Zonal Mean

Control Run

- Comparison between the simulation and the ERBE data zonal average mean TOA :a)radiation budget (Wm/2)b) net incoming SW (thin lines) and output LW (thick lines) TOA (W/m2) <u>gif</u> or <u>postscript</u> files
- Net shortwave incoming (thin lines) and longwave outgoing (thick

lines) flux (W/m2) at the top of atmosphere as observed by ERBE (long dash), as computed by the atmospheric model in the coupled run (continous line) and in a forced control simulation (short dashe). In a) during the australe winter (JJA) and in b) during the asutrale summer (DFJ).

gif or postscript files

Maps

Scenario Run

- Surface temperature difference between periode (1979:1998) and periode (1860:1940). IPSL model and observations (Johns et al. 1994, Parker et al. 1994).
 gif or postscript files
- Surface temperature (Top) and precipitaion (Bottom) difference between the scenario and the control run, around year 2100 (10 year mean, 2090-2099).
 <u>gif</u> or <u>postscript</u> files
- An other surface temperature (Top) and precipitation (Bottom) difference between last ten years and first ten years of simulation.

gif or postscript files

 SST (left) and SST difference (right) between the scenario and the control run, around year 2100 (10 year mean, 2090-2099). Top : january to april mean. Botom : jully to october mean.

gif or postscript files

Regional fluxes (in GtC/yr) in 2030-2050 from LF8 (red), LF9 (black) (Top), and regional climatic effect (green) and additional CO2 effect (blue) (Bottom) (M. Berthelot and L. Bopp).

gif or postscript file

Control Run

 Difference between control run SST and Levitus SST (black/white)
 rif or postsoriat files

gif or postscript files

- DJF and JJA precipitaion for the control run. <u>gif or postscript</u> files
- Interannual surface temperature variability (RMS of the detrend annual mean temperature). Model (control run, 190 years) and observations (40 years : 1860-1998) (Johns et al. 1994, Parker et al. 1994).
 <u>gif</u> or <u>postscript</u> files
- Antarctic sea-ice fraction and thickness, in february (minimum) and september (maximum) <u>gif</u> or <u>postscript</u> files
- Arctic sea-ice fraction, in february (maximum) and september (minimum)
 gif or postsorint files

gif or postscript files

 Arctic sea-ice thickness, in february (maximum) and september (minimum) <u>gif</u> or <u>postscript</u> files

EOF Analysis

EOF (maps) and time series (PC, principal components)

- Biopshere, annual NEP. Filtered following Lat and Lon over 5 points. Filtered following time over 5 points. Four first EOF.
 - LF7 , 3 first EOFs: [gif] , [ps],
 - LF8 , 4 first EOFs: [gif] , [ps],
 - Coupled climate/carbon change (LF8-LF7), 4 first EOFs: [gif], [ps],
 - NEP change without climate feedback (LF9-LF7), climate impact on NEP (LF8-LF9), direct climate impact (LFB-LF9) and indirect climate impact (LF8-LFB) [gif], [ps],

Other figures

3D plot of the temperature difference beween control and scenario around year 2100 (By Laurent Fairhead)

The Atmospheric and Oceanic Grids (By Laurent

Fairhead) [gif], [png], [ps]

I Time evolution of CO2, surface temperature change and climate impact on land carbon cycle

Data access on the web

Monthly and annual means for the following variables are readily available.

- Data access via FTP: <u>at LMD</u> or <u>at IDRIS</u>
- Data access via DODS at LMD or at IDRIS

Contact

For more informations, please contact Jean-Louis Dufresne (jldufres@lmd.jussieu.fr), Pierre Friedlingstein (pierre@lsce.saclay.cea.fr) or Laurent Fairhead (fairhead@lmd.jussieu.fr).

Back to <u>LMD homepage</u>