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a b s t r a c t

We report a study of the attenuation of submarine Photosynthetically Active Radiation (PAR) in relation
to the concentrations of Optically Active Constituents (OACs) in a range of water types around the United
Kingdom. 408 locations were visited between August 2004 and December 2005. The diffuse attenuation
coefficient (Kd) was estimated from profiles of downwelling PAR. Concentrations of Suspended Partic-
ulate Matter (SPM) were measured gravimetrically and concentrations of phytoplankton chlorophyll
(chl) were measured by fluorometrically. Chromophoric Dissolved Organic Matter (CDOM) was measured
either by fluorescence or as its proxy, salinity.
Several empirical models for Kd as a function of SPM, chlorophyll and CDOM were fitted to the data set. It
was found that including all three explanatory variables (CDOM, chlorophyll and SPM) gave a slightly
better fit for coastal and offshore waters, whereas a fit based only on SPM and chlorophyll worked well
for transitional (estuarine) waters. The use of SPM as a single predictor of Kd in all water types resulted in
only 3% loss of accuracy.
The effect of seasonal variations in the light climate and the OACs was investigated with high frequency
data from moorings in the Thames embayment and Liverpool Bay. Kd was estimated from data recorded
from pairs of vertically separated PAR sensors. Using the empirical models to estimate Kd from these
OACs showed that reliable estimates of attenuation could be made throughout the year, with some
scatter of estimated Kd about observed Kd during the growing season.
The reliability of these findings was validated by non-linearly fitting of a mechanistic model, based on
semi-intrinsic optical parameters, to the spatial data set. Estimated values of absorption cross-section
and scattering cross-section were in good agreement with the literature, and help to justify parameter
values obtained from the empirical models.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Effective strategies for managing nutrient enrichment in marine
waters require an understanding of how different types of waters
respond to nutrient inputs. Susceptibility to nutrient enrichment is
controlled by a wide variety of processes (Painting et al., 2005).
Recent reviews (Cloern, 1999, 2001) of the developing conceptual
scientific model of marine eutrophication has shown a clear
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progression from simple dose–response models, typically used in
freshwater science, to a more realistic model that identifies direct
and indirect responses that are governed by ‘filters’. The variables
that form the filter are the underwater light climate, the degree of
horizontal exchange, the tidal mixing regime, the extent of pelagic
and benthic grazing, and biogeochemical processes such as deni-
trification. Light limits growth of phytoplankton and is a first order
determinant of the response of phytoplankton to nutrient input in
the sea. The supply of photosynthetically active radiation (PAR) for
phytoplankton growth in the sea is a product of the input of solar
radiation at the surface and its reduction by optically active
compounds (OACs) through absorption and scattering (Kirk, 1994),
which itself is increased by higher phytoplankton concentrations.
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Fig. 1. A map of the British Isles and Republic of Ireland showing the location of
sampling sites. Crosses illustrate the stations profiled during the spatial survey. Filled
circles denote the site of CEFAS Smart Buoys at the Warp Anchorage in the Thames
estuary and in Liverpool Bay. The extent of Water Framework Directive coastal and
transitional water types are illustrated in light grey.
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These internal feedbacks make the behaviour of light difficult to
quantify. The rate at which light diminishes with depth is generally
measured as the diffuse vertical attenuation coefficient for down-
wards PAR, Kd.

The UK has a large coastal zone, and many of its transitional
and coastal waters are turbid and optically complex. Most of the
marine waters in the UK are thought to be light limited, influ-
encing the maximum rate of primary production (Devlin et al.,
2008). Knowledge of the underwater light climate can help to
predict the specific susceptibility of different marine environ-
ments to the adverse effects of nutrient enrichment, and thus
focus costly measures for reducing nutrient load on those water
bodies that are mostly likely to be improved in quality (Jago et al.,
1993). However, it is not feasible to characterise all UK marine
water bodies by direct measurement of Kd at different times of
year and under a range of tidal stirring or freshwater discharge
conditions. Instead, we have sought a model that relates variation
in diffuse attenuation to differences in the amounts of Optically
Active Components (OACs).

This paper reports observations of Kd and OACs in a variety of
estuarine, coastal and offshore waters around the United Kingdom.
The data have been used to estimate empirical attenuation cross-
sections (the k*) in the equation:

Kd ¼ k*
w þ k*

CDCDOMþ K*
PHchloroþ k*

SPSPM (1)

where the terms on the right hand side of the equation refer to the
effects of water ðk*

wÞ, ‘yellow substance’ or coloured dissolved
organic matter (CDOM) measured as fluorescence, phytoplankton
photosynthetic pigments measured as the concentration of chlo-
rophyll (chloro), and suspended particulate matter (SPM). The
Equation (1) is derived from the following mechanistic equation
(Kirk, 1994) in terms of beam absorption coefficients, a, and
absorption cross-sections, a*:

Kd ¼ m�1
d a

¼ m�1
d

�
aw þ a*

CD½CDOM� þ a*
PH½chloro� þ a*

SPM½SPM�
�

(2)

on the assumption that the mean cosine for downwards PAR
photons, md, can be treated as a constant over the variety of water
types, solar angles and cloud covers encountered during the study.
An alternative to this assumption (from Kirk, 1994 and Bowers
et al., 2000) is to make the cosine depend on beam scattering by
SPM:

m�1
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ km

�
b*

SP½SPM�
�
=a
�r

(3)

where b*
SP is a scattering cross-section and km is a parameter to be

discussed further in ‘Methods’. These equations are termed
‘mechanistic’ because they synthesise the ‘apparent optical prop-
erty’, diffuse attenuation, from more fundamental ‘inherent optical
properties’ than can be measured in the laboratory. In fact, the
beam absorbance cross-sections and the beam scattering cross-
section used here are not truly inherent, because they depend on
the spectrum of submarine illumination, which is likely to vary
amongst the water types studied.

The aim of the paper is to report observations of attenuation
and OACs in UK salt waters, and derive a practically useful, theo-
retically informed, model for predicting Kd. The analysis presented
here extends the results and interpretation reported by Devlin
et al. (2008) which aimed chiefly to estimate typical attenuations
in each of the UK water types that have been identified for the
Water Framework Directive (Vincent et al., 2002; Rogers et al.,
2003).
2. Methods

2.1. Sampling strategy

Surveys carried out between August 2004 and December 2005
aimed at spatial extensiveness and visited a total of 408 locations
(Fig. 1). Sampling took place from a variety of observational plat-
forms, providing data at a range of spatial and temporal resolutions.
Platforms used included: small vessels (inflatables and EA survey
vessels) for spatial sampling in inshore areas; larger research
vessels (ABFI R.V. Corystes and CEFAS Endeavour) for spatial
sampling in deeper offshore regions; and bridges for some estua-
rine sites. In July 2005, sampling was undertaken in the Clyde sea
area and Irish Sea (including Irish coastal waters of the western
Irish Sea) during a Department of Agriculture and Rural Develop-
ment (DARD) RV Corystes cruise. Sampling sites were identified as
either transitional or coastal water types as designated by the Water
Framework Directive (CEC, 2000), or offshore waters. Transitional
waters are estuaries, characterised by salinities less than 30. Coastal
waters are defined as those waters within 1 nm of the coast (3 nm
from an extended coastal baseline in Scotland). All sites sampled
seaward of the WFD defined coastal waters and were grouped as
offshore waters.

Temporal variation of light measurements were accounted for
by using daily averages of nearly-continuous observations by
instrumented buoys (www.cefas.co.uk/monitoring) at 2 sites in
shallow (<20 m) coastal locations (Fig. 1). Each buoy houses a suite
of autonomous instruments measuring a range of variables at high
frequency (daily to hourly) at fixed-point locations (http://map.
cefasdirect.co.uk/smartbuoyweb/StaticMapPage.asp). Both sites
(Liverpool Bay and the Warp Anchorage in the Thames estuary)

http://www.cefas.co.uk/monitoring
http://map.cefasdirect.co.uk/smartbuoyweb/StaticMapPage.asp
http://map.cefasdirect.co.uk/smartbuoyweb/StaticMapPage.asp
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were in regions of freshwater influence close to major riverine
nutrient sources and were generally well mixed with regard to
density. However, intermittent periods of stratification, mainly due
to salinity, have been observed in Liverpool Bay where SmartBuoy
observations were carried out as part of the Proudman Oceano-
graphic Laboratory (POL) Liverpool Bay Coastal Observatory pro-
gramme (www.cefas.co.uk). Data from the Thames buoy covered
the period from December 2000 until December 2005; that from
Liverpool Bay started in November 2002 and ended in November
2005.
2.2. Sampling methods

At each survey site profiles were obtained using a stainless steel
protective frame containing a solid state logger (Cefas ESM2)
sampling at 2 Hz interfaced to a range of sensors that was lowered
by hand or using a hydrographic winch. Sensors used included
a Falmouth Scientific Instruments (Falmouth, USA) CT sensor,
a Druk (Origin) pressure sensor, a Seapoint (Origin) chlorophyll
fluorometer and optical backscatter sensor and a LI-COR (LI-192)
Underwater Quantum Sensor measuring downwelling PAR irradi-
ance. Care was taken to minimise the influence of shading on
measurements made by the irradiance sensors by profiling through
a constant light field; i.e. a profile could be carried out either on the
illuminated or the shaded side of the platform, provided conditions
were consistent and the instruments did not go into and out of
shadow. Surface and near bottom water samples, were collected
using Niskin type water bottles for the estimation of SPM, chloro-
phyll, CDOM and salinity. Offshore water samples were collected in
5-l water bottles mounted on a rosette sampler from the near
surface (2 m) and near bottom (2–3 m above the seabed). At deep
sites a water sample was collected from 25 m, which corresponded,
to the lower limit of the irradiance profile.

The SmartBuoy instruments were in general similar to those
described above. The main differences were as follows. Sensors
interfaced to the logger are sampled at 1 Hz for two 10-min bursts
each hour. Data for these 10-min bursts are averaged and are
referred to as ‘burst means’. 2–3 water samples of 150 ml each, for
subsequent gravimetric analysis of SPM, were collected each week
of deployment using an automated water sampler (AquaMonitor,
Envirotech, Virginia, USA). Sensors and samplers were positioned at
fixed depths between 1 and 2 m. Two upwards pointing LI-COR
quantum irradiance sensors are used to measure downwelling PAR
irradiance at 1 and 2 m depths.
2.3. Laboratory analyses

Salinity, chlorophyll, SPM and CDOM analyses were carried out
on samples collected from spatial surveys using Niskin bottles and
on water samples collected on the SmartBuoy. For salinity, samples
were collected in 200 ml medical bottles and stored prior to anal-
ysis at Cefas. Salinity was measured using a Guildline Autosal 8400b
laboratory salinometer.

Chlorophyll was measured by passing up to 250 cm3 of seawater
through Whatman GF/F glass fibre filters. These filters were
extracted overnight in 90% acetone neutralised with NaHCO3 in
darkness in a refrigerator as described by Tett (1987). After centri-
fugation, extract fluorescence was measured using a Tuner Designs
Model 10 – AU – 005 CE fluorometer before and after acidification
with 8% HCl. This was used to calculate concentrations of ‘chloro-
phyll a’. The fluorometer had been calibrated using pure solutions of
chlorophyll a (Sigma Chemical Co, ORIGIN) with concentration
determined spectrophotometrically. Replicate measurements of
chlorophyll had typical standard errors of around 10%.
Samples for SPM were preserved with mercuric chloride and
returned to the laboratory for filtration. The concentration of SPM
was measured by gravimetric analysis using the method of Strick-
land and Parsons (1972). Known volumes of water were filtered
through pre-weighed Whatman GF/C glass fibre filters in the
laboratory. The filters were then dried and re-weighed to calculate
the total suspended sediment collected on the glass fibre filters.
Suspended load concentration was calculated from differences in
the weight (Strickland and Parsons, 1972).

Samples for CDOM were collected from Niskins in high-density
1l polyethylene (HDPE) bottles, filtered through a 47-mm 0.2-mm
membrane and the resulting filtrate kept in amber bottles and
refrigerated prior to analysis. Samples were allowed to reach room
temperature. CDOM fluorescence was measured at room temper-
ature using a Turner Fluorometer Model 10 Series fitted with
a 310–390 nm excitation filter and 410–600 nm emission filter,
with 10-327R attenuator plate. The method is described in detail
in Foden et al. (2008). CDOM units have been revised from N.Fl.U.
to be quoted as S.Fl.U. – standardised fluorescence units, as
differentiated from normalised fluorescence units, by Ferrari and
Dowell (1998).

In the absence of CDOM data on the SmartBuoy measurements,
salinity was used as a proxy for CDOM. A strong, negative corre-
lation coefficient of CDOM to salinity (r2¼ 0.81) is reported in
Foden et al. (2008). The linear relationship described in this paper
(y¼�0.174xþ 6.288) was used to calculate CDOM from the high
frequency salinity data collected with the SmartBuoy observations.
2.4. Calibration of sensors

The fluorometers used in this study, for profiling and moored
observations, are designed to provide a linear response between
chlorophyll concentration and fluorometer voltage. Although cali-
brated by the manufacturer, in practice a calibration based upon
field data is required (Mills and Tett, 1990).

The equation

X ¼ ðF � fo=EÞ (4)

was used to predict chlorophyll concentration X mg m�3 where
E¼ compound fluorescence emission coefficient m3

(mg pigment)�1 (V or arbitrary units);
F¼ fluorometer output in volts or arbitrary units in the case of

the Seapoint fluorometer;
fo¼ fluorometer output in the absence of extractable pigment.
The primary aim in calibrating the fluorometer was the esti-

mation of the compound fluorescence coefficient, E. Linear
regression of fluorometer voltage on observed pigment concen-
tration gives slope E and an intercept defined by the manufacturer.
Pigment data for the calibration regressions were obtained by
collecting water samples immediately after each profile or from
samples collected alongside the SmartBuoy fluorometers at the
beginning and end of deployments.

Concentrations of SPM were regressed (least squares linear
regression) against corresponding values of optical backscatter
(OBS) recorded as manufacturer calibrated FTU. Values of SPM
concentration were estimated from the equation:

SPM ¼ ðFTUþ intercept=slopeÞ (5)

and used to generate vertical profiles of SPM concentration. These
profiles were then used to calculate a mean SPM concentration. For
vertically mixed waters the whole SPM profile was used and in
stratified waters the SPM profile in the surface mixed layer was
used to derive the mean concentration (Mills et al., 2002).

http://www.cefas.co.uk
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2.5. Calculation of Kd (PAR)

The attenuation coefficient, Kd (m�1) of photosynthetically
available radiation (PAR), was calculated using the Lambert–Beer
equation (Dennison et al., 1993) from vertical profiles of downw-
elling irradiance (Equation (6)). The light attenuation coefficient
relates to light penetration depth and the quantity of suspended
and dissolved substances.

Kd ¼ �dðlnðEzÞÞ=dz; approximated as : � DðlnðEzÞÞ=Dz (6)

where Kd represents the attenuation coefficient for downwards
PAR, and ln (Ez) is the natural logarithm of PAR at depth z (z
increasing downwards).

Surface light attenuation was not measured through the
profiling. Profiles which showed evidence of contamination by
cloud cover or inconsistent match ups between the top down and
bottom up profiles were discarded.

To be consistent with the method of calculating mean concen-
trations of SPM, Kd was derived from the whole light profile and
surface mixed layer profile in vertically mixed and stratified waters
respectively. Kd was calculated from the slope of irradiance and
depth. Typically, the relationship between logarithmic PAR and
depth was linear. Areas of scatter were excluded from the vertical
profile. These were most commonly seen at the region of hyper-
exponential decay near the surface as some wavelengths of light
are more quickly absorbed and the photon distribution is forced
near the surface. Linear fitting of the irradiance values was taken to
the depth at which light fell to the instrument’s minimum level of
detection.

In the case of Smartbuoy observations, Kd was taken from the
natural logarithm of the ratio of irradiances at 1 m and 2 m depth.
From the measurements of irradiance Ed (z) at two depths the Kd

was calculated as follows:

Kd

�
m�1

�
¼ ln

Edð1Þ
Edð2Þ

=zð2Þ � zð1Þ (7)

2.6. Empirical models

The empirical models developed below were chosen so that
they provided good empirical explanations of variation in Kd. As
such, the model parameters did not have any particular physical
meaning.

There were three explanatory variables for diffuse attenuation,
the concentrations of the OACs coloured dissolved organic matter
(CDOM), phytoplankton pigments, and suspended particulate
matter (SPM). Pigments were measured as chlorophyll (chloro), and
CDOM was measured as fluorescence.

Three types of model were tested. These were the Log-Normal
Model, the Linear Model and the Gamma Generalised Linear Model
(see Dobson, 2002). The three types of models were fitted using all
possible subsets of the explanatory variables. However, they are
illustrated with the full set of explanatory variables.

1. Log-Normal. For this model, it is assumed that Kd has a log-
normal distribution and is predicted by:

lnðKdÞ ¼ b0 þ bCD lnðCDOMÞ þ bPH lnðchloroÞ þ bSP lnðSPMÞ
þ error

(8)

where the error is normally distributed with mean zero and
variance y2 and the parameters, b0; bCD; bCH and bSP; are esti-
mated by their respective maximum likelihood estimates
bb0;
bbCD;

bbCH and bbSP. In order to obtain predictions of Kd on the
untransformed scale, the standard back-transformation was
used

~Kd ¼ exp
�

ln
�

~Kd þ by2
=2
��

(9)

where lnðbK d ¼ bb0 þ bbCD lnðCDOMÞ þ bbPH lnðchloroÞ þ bbSP

lnðSPMÞÞ and by2 is the estimate of the residual variance on the
log scale.

2. Linear. This is the model of Equation (1), involving the
assumption that the effect of each OAC on attenuation is line-
arly additive:

lnðKdÞ ¼ b0 þ bCDCDOMþ bCHchloroþ bSPSPMþ error (10)

where the error is normally distributed with mean zero and
variance s2. Note that the b parameters here are equivalent to
the empirical attenuation cross-sections (the k*) defined in (1).
The predicted value is then,

bK d ¼ bb0 þ bbCDCDOMþ bbPHchloroþ bbSPSPM (11)

3. Gamma GLM. In this case it was assumed that Kd has a log-
normal distribution; its mean was modelled using a General-
ised Linear Model with errors that have a Gamma distribution
and a log-link between the explanatory variable Kd and the
linear predictor. The predicted values of Kd from this model
were simply the exponential of the estimated values from the
linear predictor:

bK d ¼ exp
�bb0 þ bbCDCDOMþ bbPHchloroþ bbSPSPM

�
(12)

A succession of models using each of these three approaches was
calculated to investigate how the different combinations of the
variables performed in the prediction of Kd. Fitting was carried out
using the R statistical package (R Development Core Team, 2006).

To test the accuracy of the models, a cross validation measure
(referred to here as D), was used. It calculates the percentage
difference between predicted and observed values of Kd with lower
values indicating greater accuracy. D is defined as:

D ¼ 100
Xn

j¼1

����bK�j
d � Kj

d

����������bK�j
d

������ (13)

where bK�j
d is the value predicted for observation j using all of the

data except the jth observation, Kj
d is the jth observation of Kd and n

is the number of cases in the prediction data set.
The coefficients for the spatial data set were assumed static in

time and there were no time or space related components in the
models. For the purposes of calculating confidence intervals for
parameter estimates, the data were also assumed to be uncorrelated.
For a small proportion of data (approximately 20%) that have been
measured on the same day, this assumption is unlikely to be true.
Thus, we can anticipate that confidence intervals will be marginally
narrower than they should be, but the intervals should still give
a good guide as to the accuracy of the coefficients. On the other hand,
the high-frequency Smartbuoy data are likely to be strongly auto-
correlated on short time-scales. For these data, we have not calcu-
lated confidence intervals for parameter estimates but have used
these data to demonstrate the adequacy of the prediction methods
and to investigate their performance throughout the year.
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2.7. Theoretical model

The theoretical model introduced in Equations (2) and (3) is
built from the (semi)-inherent optical properties of absorption and
scattering. It can be restated as follows:

Kd ¼ m�1
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a2 þ kmab

	q
(14)

a ¼ aw þ a*
CDCDOMþ a*

PHchloroþ a*
SPSPM (15)

b ¼ b*
SPSPM (16)

Three parameters were known a priori. The first of these, mo is the
mean cosine of downwelling light in the absence of scattering. It
was given the value of 0.85, suitable for southern UK waters in the
middle part of the day in summer. The coefficient called km was
expanded by Bowers et al. (2000) as 0.425� mo� 0.19, resulting in
a value 0.171. The value of seawater absorption for PAR was taken as
aw ¼ 0:02 m�1. The remaining four parameters (the a* and b*

values) were estimated by non-linear fit of the Equation set (14)–
(16) to the whole-survey data set. The fit was done in the statistical
package R (R Development Core Team, 2006) using a simple least
squares error criterion and a Nelder-Mead optimisation criterion in
the function optim. Ninety-five percent confidence intervals for the
model parameters were calculated using bootstrapping with 1000
re-samples (Manly, 1998).
3. Results

The survey data set used for development of the empirical
models contained 382 full rows, each row contained Kd, SPM,
CDOM and chlorophyll observations. The fitting of the full theo-
retical model was pruned of any row with missing observations.
Four cases were removed as their SPM values were large outliers,
not corresponding with water type, which we assume could have
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been caused by measurement error. This left 273 complete rows,
from the original 382. However, parameter estimates for models,
were derived using all data rows that were complete for these
models, which provided more data for the simplified models than
for the complete models. Data rows were further characterised by
water type: transitional waters (62 complete rows), coastal waters
(185 complete rows), and offshore waters (26 complete rows).

High frequency data from the SmartBuoys was extracted from
January 2001 to 2005 for Thames embayment and from January
2003 to 2005 for Liverpool Bay. Measurements of chlorophyll, SPM
and salinity were taken for the optically important components of
Kd. Data rows with missing observations were deleted, leaving 1091
rows for the Thames and 843 rows for Liverpool Bay.

3.1. Empirical modelling using survey data

The logarithmic relationships (over the whole data set) between
Kd and CDOM, chlorophyll and SPM are illustrated in Fig. 2. By far
the strongest and clearest relationship was between Kd and SPM,
with log-transformed SPM explaining 91% of the variance in log-
transformed Kd. The patterns were less clear for chlorophyll and
CDOM. Nevertheless, both chlorophyll and CDOM had some
explanatory power, and although the weakest relationship,
between ln (chlorophyll) and ln (Kd) explained only 3% of the
variance in the latter, the correlation was statistically significant
(p¼ 0.006).

Results from fitting the empirical models are given in Tables 1
and 2. In addition to fitting to the full data set, the models were also
fitted separately to each of the three sets of category-specific data.

Comparison of the models using the full data set identified the
single variable SPM, as being the most important variable for
estimating Kd. Comparing the model scenarios, using a combination
of OACs demonstrated that the models incorporating CDOM and
SPM, and the model with all three variables (CDOM, SPM and
chlorophyll), performed the best. There was little to choose
between the Generalised Linear and the Log-Normal models. The
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Table 1
Values of the fit statistic D for the survey data. Within each part of the table, the
three rows give results for the model categories: Log¼ log-normal, Lin¼ linear;
GLM¼ gamma Generalised Linear Model. D is the mean of the absolute relative
deviations, expressed as a percentage.

Mean D

Explanatory Variables
in model

Model
type

Full data Coastal Transitional Offshore

CDOM Log 85.5 63.4 93.4 47.4
Lin 99.2 90.3 98.0 879.5
GLM 76.6 61.2 85.3 46.8

Chlorophyll Log 107.3 91.4 82.1 89.8
Lin 102.3 87.0 90.3 89.6
GLM 97.2 88.1 76.4 79.8

SPM Log 25.3 22.1 18.8 18.7
Lin 28.8 23.3 19.1 17.7
GLM 25.3 22.0 18.4 18.3

CDOMþ Chlorophyll Log 85.1 63.6 76.0 44.3
Lin 99.8 109.4 87.3 583.5
GLM 75.5 61.7 70.2 44.2

CDOMþ SPM Log 20.4 20.1 18.0 16.4
Lin 24.0 20.4 18.0 14.4
GLM 20.3 20.0 17.6 15.2

Chlorophyllþ SPM Log 24.6 21.5 15.4 15.1
Lin 26.8 21.7 14.6 15.0
GLM 24.6 21.5 14.9 14.6

CDOMþ Chlorophyllþ SPM Log 20.3 19.5 15.3 14.7
Lin 24.1 19.3 15.2 13.1
GLM 20.3 19.5 14.8 14.2
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lowest value of D¼ 22.6 for the log-normal model using the full
data set of CDOM and SPM values can be interpreted as saying that
Kd values were predicted with approximately 23% relative accuracy.
In terms of future prediction, the Linear, Log-Normal and Gener-
alised Linear Model performed equally well.

In general, the models fit better in the transitional and
offshore waters than in the coastal waters. As expected, models
for separate water types generally perform better than a single
model fitted to the whole data set. Percentage improvements of
about 6% for the transitional and offshore waters would seem to
justify fitting different models to these areas.

For both coastal waters and offshore waters, the full model fitted
slightly better than the reduced models. In transitional waters, the
reduced model of chlorophyll and SPM performed very similarly to
the full model. There was little difference between the perfor-
mances of the three model types.
Table 2
Estimated linear model coefficients for the three models, 95% confidence intervals(in br

df b0

SPM (m2 g�1) Transitional 77 0.338 (0.205
Coastal 249 0.188 (�0.01
Offshore 46 0.001 (�0.08

b0

CDOM (S.Fl.U)þ SPM (m2 g�1) Transitional 60 �0.129 (�0.17
Coastal 189 �0.116 (�0.17
Offshore 26 �0.145 (�0.16

b0

Chloro (m2 mg�1)þ SPM (m2 g�1) Transitional 76 0.229 (0.098
Coastal 246 �0.004 (�0.04
Offshore 43 0.036 (�0.09

b0

CDOM (S.Fl.U)þ chloro (m2 mg�1)þ SPM (m2 g�1) Transitional 59 0.222 (0.064
Coastal 187 �0.150 (�0.20
Offshore 24 �0.167 (�0.20
Table 2 includes the parameter estimates for three of the best
combinations of explanatory variables for the linear model. For
offshore and coastal there is little difference between the perfor-
mance of the models with SPM and CDOM and with SPM and
chlorophyll (though the former models are about 1% better). For
transitional waters, there is a 3.4% improvement in relative
prediction for the model with SPM and chlorophyll. We suggest the
models below as the good predictive models for each category:

Offshore : bK d ¼ �0:145þ 0:156CDOMþ 0:083SPM (17)

Coastal : bK d ¼ �0:1155þ 0:5639CDOMþ 0:0654SPM (18)

bK d ¼ 0:2290þ 0:0456chloroþ 0:0652SPM (19)

Note units of measurement for CDOM, SPM and chlorophyll are
S.FL.U, mg L�1, and mg L�1 respectively.

From the 95% confidence intervals in Table 2, we can see that
CDOM and SPM coefficients for the offshore and coastal categories
are statistically different. The intercept terms for all three models
are statistically significantly different from zero.
3.2. Testing of empirical models against high frequency data

Time-series plots of Kd, salinity, chlorophyll and SPM are shown
in Fig. 3. In general, attenuation was greater during winter, when
there was high suspended particulate matter, most likely due to the
higher rainfall and runoff. Spring and summer blooms of chloro-
phyll and fluctuations in salinity, had apparently little effect on the
attenuation signal. These patterns are clarified in the scatter plots of
ln (Kd) against the OACs in Fig. 4. Ln(SPM) explained 99% of the
variation in Kd.

Calculation of D (Table 3) using high frequency data, demon-
strated that SPM remained the best single predictor of Kd. For the
Thames embayment, the best model was the linear model with
chlorophyll and SPM as explanatory variables. For Liverpool Bay the
models with salinity (as a proxy for CDOM), SPM and chlorophyll
fitted slightly better than the CDOM and SPM model.

As an illustration, relative residuals were calculated from the
log-normal model with SPM as the explanatory variable for both
Liverpool Bay and Thames moorings (Fig. 5). The relative residuals
(i.e. the components of D) were plotted against day of year. They
show that the model fits reasonably well throughout most of the
year, with higher deviation during the phytoplankton bloom season
(March–May). This would suggest that even though SPM is the best
ackets) and residual degrees of freedom for the survey data set.

bsp

,0.472) 0.065 (0.063,0.067)
3,0.051) 0.064 (0.068,0.071)
1,0.083) 0.066 (0.058,0.074)

bCD bsp

9,0.079) 0.58 (0.415,0.746) 0.064 (0.062,0.066)
,�0.061) 0.564 (0.383,0.745) 0.065 (0.064,0.067)
9,�0.121) 0.156 (0.038,0.273) 0.083 (0.076,0.089)

bPH bsp

,0.360) 0.046 (0.024,0.067) 0.065 (0.063,0.067)
8,0.040) 0.016 (�0.006,0.038) 0.070 (0.068,0.071)
5,0.167) �0.028 (�0.109,0.054) 0.064 (0.056,0.073)

bCD bPH bsp

,0.379) 0.003 (�0.061,0.066) 0.048 (0.025,0.071) 0.064 (0.062,0.066)
4,�0.096) 0.569 (0.404,0.735) 0.0163 (�0.001,0.034) 0.086 (0.079,0.094)
3,�0.132) 0.102 (�0.031,0.235) 0.018 (�0.004,0.040) 0.086 (0.079,0.094)
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Fig. 3. High frequency data from the Smartbuoys. Time-series plots. In the case of the Thames mooring, day 0 is 1st Jan 2001, ending 21st June, 2005. For Liverpool Bay it is Jan 1,
2003, ending 4th Sept, 2005.
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single predictor over time for Kd, there are periods during the year
when the simple linear relationship breaks down and that the high
concentrations of chlorophyll present in the spring and summer
blooms do influence the prediction of Kd. It is still suitable to use
SPM as a single predictor for the majority of the year without
a significant loss of accuracy, however, during spring and summer
blooms, it would be more appropriate to use the mixed model of
chlorophyll and SPM in the Thames and the full model (CDOM, SPM
and chlorophyll) for Liverpool Bay.

3.3. Theoretical model

Parameter estimates and bootstrapped 95% confidence intervals
from the non-linear fit of the theoretical model are given in Table 4.

We also calculated the value of the D-statistic for the non-linear
model. This came to 27.5. If we compare this with the values in the
last row of Table 1 for the empirical models, we can see that these
empirical models perform between 3 and 7% better than the
theoretical model.
4. Discussion

The most striking and useful outcome from the empirical
analysis is that SPM concentration is the most important predictor
of diffuse attenuation. A linear regression using only SPM estimated
Kd has a mean error of 30% over the whole data set, falling to 18% in
the case of the offshore data set. Using logarithmic regression or
a GLM reduced the error for the whole data set slightly, to 27–28%.
Adding in the effects of chlorophyll and CDOM reduced the linear
model error only to 26% for the whole data set and 13% for the
offshore data set (23% and 14–15% for the other models). This
supports work by Cloern, 1987, May et al., 2003, Painting et al.,
2005, Weeks et al., 1993, Lund-Hansen, 2004, Xu et al., 2005, Devlin
et al., 2008 that strong correlations between Kd and SPM imply that
light attenuation, particularly in UK estuaries, is primarily a func-
tion of suspended sediment concentrations.

There are three reasons for this dominance. Firstly, SPM influ-
ences the optical signal by way of scattering as well as absorption of
light. Secondly, the data set included a very wide range of SPM



Fig. 4. High frequency data from the Smartbuoy observations described in scatter plots of log-transformed Kd on log-transformed optically active components.

Table 3
Values of the fit statistic D for the high frequency data. Within each part of the table,
the three rows give results for the model categories: Log¼ log-normal, Lin¼ linear;
GLM¼ gamma Generalised Linear Model. D is the mean of the absolute relative
deviations, expressed as a percentage. Thames is Thames embayment and Liv. Bay
denotes Liverpool Bay marine area.

Explanatory variables in model Model
type

Thames
full data

Liv Bay
full data

CDOM [sal] Log 36.2 38.2
Lin 36.7 38.1
GLM 36.7 38.3

Chlorophyll (m2 mg�1) Log 34.1 37.9
Lin 36.4 43.9
GLM 34.5 38.0

SPM (m2 g�1) Log 18.1 22.4
Lin 18.4 23.0
GLM 18.2 22.4

CDOM[sal]þ Chlorophyll (m2 mg�1) Log 34.2 34.7
Lin 36.5 53.5
GLM 34.6 34.8

CDOM [sal]þ SPM (m2 g�1) Log 18.0 21.7
Lin 18.3 21.9
GLM 18.0 21.6

Chlorophyll (m2 mg�1)þ SPM (m2 g�1) Log 17.9 22.3
Lin 17.8 23.2
GLM 17.9 22.2

CDOM [sal]þ Chlorophyll (m2 mg�1)
þ SPM (m2 g�1)

Log 17.7 21.4
Lin 17.7 21.3
GLM 17.8 22.0
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concentrations, from 3.7 to 110 mg/L. Thirdly, many UK waters are
turbid, with a high load of suspended particles. In this they may be
contrasted with other waters. The Baltic Sea, for example, has an
optical signal dominated by CDOM because of the large freshwater
content, whereas under non-tidal and fjordic conditions, the SPM
load is comparatively small (Kratzer et al., 2003; Kratzer and Tett, in
press).

There is little to choose in prediction performance between any
of these models. The fact that the gamma GLM model performs
similarly to the log-normal model suggests that the log-normal
model is a good model for Kd as the log-normal model is one of the
family of gamma GLM models. However in terms of simplicity, we
recommend the use of the linear models as they are relatively easy
to populate with no need to calculate error. There is little or no loss
of accuracy in choosing the linear model for all water types.

Fig. 6 compares: the parameter values estimated by fitting the
mechanistic model to the whole data set; those estimated by the
empirical multiple linear regression of coastal water attenuation on
the three OACs; and values taken from Bowers et al. (2000), which
were based on relevant literature and studies in the Irish Sea and
the Clyde Sea. The Bowers et al values for SPM refer to mineral
suspended particulate matter, whereas the values from the present
work refer to total SPM (i.e. including some organic component).

‘Mech-all’ in Fig. 6 refers to parameters of the mechanistic, or
theoretical, model fitted to the entire data set, which gave esti-
mates of a*PH and a*SP (Table 4). ‘Lin-coastal’ in Fig. 6 refers to
parameters from a linear fit of the coastal waters data set for Kd to
CDOM, chlorophyll and SPM; the result of this fit was a set of
attenuation cross-sections (Table 2, final rows), which have been
converted to absorption cross-sections in Fig. 6(a) and (b) by
multiplying by m¼ 0.8, a value of the mean cosine estimated from
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Equation (3) and mean values of the optically active components.
This was also done to get the water absorption (aw) in Fig. 6(c) from
the multiple regression intercept in Table 2. The value for water
absorption in the mechanistic model was that assigned before
fitting. The scattering cross-section (b*SP) in Fig. 6(d) could not be
estimated for the ‘lin-coastal’ data set.

Taking account of the confidence limits, both estimates of a*PH in
Fig. 6(a) agree well with the values from Bowers et al. The offshore
waters value in Table 2 is also in good agreement. The transitional
waters value seems high; although the confidence limits overlap
the Bowers et al. values for short wavelengths, it is more likely that
it is the longer wavelength values that are typical of these waters.

The mechanistic model value of a*SP. is in good agreement with
the values from Bowers et al.; the linear model’s value for coastal
water is significantly higher, and this is also the case for the values
for transitional and offshore waters in Table 2. In the case of the
coastal and offshore waters data sets, a possible explanation relates
to the linear model’s estimate of the absorption, aw, of pure water.
As shown in Fig. 6(c) for coastal waters, this was �0.15 m�1

compared with 0.02 m�1 in the mechanistic model and the data set
of Bowers et al. The negative intercept of the (multiple) linear
regression has to be compensated by a higher value in the coeffi-
cient for the main optically active component, which is SPM. This
explanation does not work for transitional water, for which aw was
estimated as þ0.18.

Finally, the estimate of scattering cross-section from the
mechanistic model agrees well with the value from Bowers et al.,
although within wide confidence limits.
Table 4
Parameter estimates and 95% bootstrapped confidence intervals for the theoretical
non-linear model in Equations (14)–(16).

Parameters (units) Estimate and 95% confidence interval

a*
CD 0.054 (0.028, 0.121)

a*
PH m2 mg�1 0.028 (0.008, 0.036)

a*
SP (m2 g�1) 0.043 (0.019, 0.054)

b*
SP (m2 g�1) 0.163 (0.045, 0.796)
The generally agreement between values estimated with the
mechanistic model and those in Bowers et al. (2000) gives us
confidence in the observations and the methods used to analyse the
data resulting from them. The differences between the mechanistic
model values and those obtained by multiple linear regression can
be explained by the fitting of a linear model to graphs that may
have some curvilinear or bimodel aspects, as can be seen in Fig. 2.
Nevertheless, we can have confidence in the results from the
empirical model because of these comparisons as well as from the
results in Table 2 showing that the linear multiple regressions of Kd

on CDOM, chlorophyll and SPM show a relative percentage
prediction error of less than 25% for the full data set, and less than
20% when the data set is divided between water types. Finally we
can conclude from Table 2 that a simple linear model relating
attenuation only to SPM will often be adequate for the estimation of
Kd in UK coastal waters, with less than 30% prediction error in the
case of the full data set and less than 20% for the individual type
data sets.

The outcomes of the models demonstrate that single sets of
model parameters can be used effectively across a wide range of
water types and times of year. The remaining error in the model fits,
and the resulting uncertainty in parameter values, is likely from
two main groups of causes. The first is the result of variability in the
submarine light field that is not taken into account in any of the
models. Such variability derives from: (1) seasonal and diel changes
in the angle of incidence of solar radiation on the sea surface, which
introduce variation into the parameter m0 that we have treated as
fixed; and (2) variations in the spectral distribution of submarine
light, which depend on the optical type of water. The latter
contribute to uncertainty in the model parameters, because the
truly intrinsic parameters are functions of wavelength whereas we
have treated them as constant for PAR.

The second group of causes relates to the inherent properties of
the OACs themselves. Scattering per unit mass of particulate matter
depends on particle size, so we might expect regional variability in
a*SP and b*SP. Despite this variability we found a clear, all-regions,
relationship between Kd and [SPM]. Another source of variation
may have arisen from regional or seasonal differences in the type of



Fig. 6. Comparison of optical parameter values. The figure compares values of optical parameters from the present work with those given in Table 2 of Bowers et al. (2000). The
Bowers et al. values (denoted in red) are a function of wavelength, the parameter values estimated from the present work refer to submarine PAR of varying spectral composition,
and so have been plotted across the range of wavelengths used by Bowers et al. Solid lines show the estimate and dashed lines give 95% confidence. Mech-all refers to the theoretical
model and Lin-coastal refers to parameters from a linear fit of the coastal water dataset for (a) chlorophyll, (b) SPM and (c) CDOM. (d) refers to scattering cross-section calculated
only for the theoretical model.
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planktonic micro-alga and hence in the wavelength-dependent
values of a*PH.

Testing of the empirical (linear, multiple regression) model over
time using a high frequency data set has shown that the model
works well over the whole year, with a small loss of accuracy in the
summer months as shown in the residual plots in Fig. 5. The
additional scatter during these months may be the result of an
increased contribution of phytoplankton chlorophyll to the OACs,
and should be investigated further using the data available from
moorings.

The variation in residual values between Thames and Liverpool
Bay are different, with the Thames experiencing higher residual
values in May and June, indicating a later spring bloom with more
persistent summer blooms (Fig. 5). Liverpool Bay has high residual
values for only a short period of time, typically in April, indicating
that chlorophyll influences the predictive model only during very
short spring bloom peaks.

Devlin et al. (2008) investigate a large data set of SPM values from
different water types to calculate the adequacy of the predictive
models over different water types. This work illustrated the strong
relationship between SPM and Kd in UK waters. This optical domi-
nance of SPM in UK waters arises not just from its contribution to
light absorption, but also because of its strong effect on scattering
(Bowers and Binding, 2006). Further work is warranted on the



M.J. Devlin et al. / Estuarine, Coastal and Shelf Science 82 (2009) 73–83 83
temporal variation of SPM and Kd as shown by the variation in
residual concentrations during the spring and summer bloom.
However, the very high accuracy attributed to the SPM model would
warrant that the predictive models could be used with a high degree
of confidence over the majority of the year and possibly to hindcast
light from historical SPM levels in UK marine waters.

In conclusion, this study provides important new data on OACs,
and their effects on Kd, in UK estuaries and coastal waters that not
only inform of factors controlling the underwater light field but are
also relevant to interpreting remotely-sensed emergent light
(Sathyendranath and Platt, 1997; Bowers and Binding, 2006). From
the analysis of spatial and temporal light data from UK marine
waters, it is clear that SPM concentration is the most important
predictor of diffuse attenuation. Simple linear regressions using
SPM only estimated Kd with a mean error of 30% for the whole data
set, falling to 18% in the case of the offshore data set. Using loga-
rithmic regression or a GLM reduced the error for the whole data
set slightly, to 27–28%. The slight decrease in error using a combi-
nation of the other OAC’s is significant, however the strong and
persistent correlations between Kd and SPM supports current
thought that light attenuation, particularly in UK estuaries, is
primarily a function of suspended sediment concentrations.

Finally it is worth noting that these optically active compounds
can also provide important diagnostic indicators of a wide variety
of natural and anthropogenic stressors that impinge on estuaries
and coastal waters (Gallegos, 2001; Gallegos and Jordan, 2002;
Kratzer and Tett, in press).
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