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Abstract

This document describes the datasets and protocol for running global ocean-ice cli-
mate models according to the CLIVAR Working Group on Ocean Model Development
(WGOMD) Coordinated Ocean-ice Reference Experiments (COREs).
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1. Overview of the CORE dataset

This document describes the datasets and protocol for running global ocean-ice
climate models according to the CLIVAR Working Group on Ocean Model Develop-
ment (WGOMD) Coordinated Ocean-ice Reference Experiments (CORE). The CLI-
VAR WGOMD recommends using the Large and Yeager (2004, 2009) datasets for use
in various model comparison efforts, such as that documented in Griffies et al. (2009).

The input fields for the CORE datasets (the “raw” atmospheric data) are based
on a mixture of NCEP reanalysis and satellite observations – the river runoff data
are largely based on gauge records. Although there are many caveats (Griffies et al.,
2009), the CORE datasets and CORE protocol provide a means for the global ocean
climate modeling community to integrate ocean-ice models without a fully coupled at-
mospheric General Circulation Model (GCM), and to make meaningful comparisons
of the simulations made by different research groups. The approach builds from earlier
efforts by Röske (2001) for a Pilot-Ocean Model Intercomparison Project (POMIP),
and by Röske (2006) who provided a dataset for a repeating annual cycle. There have
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been other datasets developed for running coupled ocean and sea ice models, such as
Brodeau et al. (2010) used for the DRAKKAR project in Europe.

1.1. Attributes of the CORE datasets
In brief, the CORE.v1 and CORE.v2 datasets have the following attributes.

• The CORE data combines NCEP reanalysis with satellite data, with the details
of the combination motivated by certain limitations of reanalysis.

• The Large and Yeager (2004) algorithms were used in Version 1 of the interan-
nually varying forcing (IAF) CORE.v1, spanning the years 1958-2004, as well
as a normal year forcing (NYF) derived from the interannual forcing. We refer
to these “corrected” datasets as CORE-IAF.v1 and CORE-NYF.v1.

• Large and Yeager (2009) updated their original algorithms for the interannual
dataset 1948-2007, thus producing CORE-IAF.v2. A corresponding normal year
dataset, CORE-NYF.v2, is derived using the new corrections but applied to the
original (1984-2000) uncorrected NYF data files.

There are two ways to use the CORE datasets to force ocean-ice models.

– online calculation of corrections: At NCAR, the Large and Yeager cor-
rections are applied to the uncorrected datasets during the runtime of a par-
ticular ocean-ice simulation. This strategy is preferred when developing
the correction algorithms.

– pre-calculation of corrections: At GFDL and CSIRO, corrections are ap-
plied to the uncorrected datasets to produce a corrected dataset, which is
then used to integrate the ocean-ice models. Once a final suite of correc-
tions has been derived, it is sensible to work with the corrected datasets.
This is the approach utilized by most groups that do not use the flux cou-
pler from NCAR.

• The datasets are documented and supported by NCAR, with extensive refinement
as more data are gathered. GFDL supports the release of both the “raw” or
uncorrected data, as well as the corrected data resulting from applications of the
Large and Yeager (2004) and Large and Yeager (2009) modification algorithms.
Future releases of this data can be expected as improvements are made to the
data products and to our understanding of their biases.

1.2. Some details of the dataset for CORE-IAF.v2
Table 1 details variable names, units, and temporal resolution of the CORE-IAF.v2

forcing fields suitable to force a CORE interannual run.

1.2.1. Interannual forcing without leap-years
The interannual forcing fields in CORE-IAF.v1 and CORE-IAF.v2 do not contain

leap-years. That is, each year has the same length of 365 days. This limitation may
introduce some difficulties for those using the data for reanalysis efforts. However, the
decision was made by NCAR to jettison the leap-years since many researchers find this
to be more convenient given their software infrastructure.
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variable file field availability units

dn10 dn10.YYYY.05APR2010.nc 10 m air density 6 hr by 365 day kg m−3

RUNOFF runoff.daitren.clim.10FEB2011.nc, continental runoff climatology 12 months kg m−2 s−1

RUNOFF runoff.daitren.iaf.10FEB2011.nc, continental runoff 720 months kg m−2 s−1

RAIN ncar precip.YYYY.05APR2010.nc liquid precipitation 12 months kg m−2 s−1

SNOW ncar precip.YYYY.05APR2010.nc solid precipitation 12 months kg m−2 s−1

LWDN MOD ncar rad.YYYY.05APR2010.nc downward longwave 365 day W m−2

SWDN MOD ncar rad.YYYY.05APR2010.nc downward shortwave 365 day W m−2

Q 10 MOD q 10.YYYY.05APR2010.nc 10 m specific humidity 6 hr by 365 day (kg kg−1)
SLP slp.YYYY.05APR2010.nc sea level pressure 6 hr by 365 day Pa
T 10 MOD t 10.YYYY.05APR2010.nc 10 m air temperature 6 hr by 365 day K
U 10 MOD u 10.YYYY.05APR2010.nc 10 m easterly wind 6 hr by 365 day m s−1

V 10 MOD v 10.YYYY.05APR2010.nc 10 m northerly wind 6 hr by 365 day m s−1

Table 1: Description of CORE-IAF.v2 forcing fields: column one gives the netcdf variable name; column
two is the file name, with YYYY denoting each of the years 1948-2007; column three is the physical field;
column four indicates the temporal resolution of the data; and the units are listed in column five. Note
that: (1) continental runoff is for either a mean seasonal cycle or interannual varying data (Section 2.5.2);
(2) precipitation fields are a climatological mean annual cycle prior to 1979; (3) the radiant (longwave and
shortwave) fluxes are climatological mean annual cycles prior to 1984; (4) that the variable name annotation
“ MOD” denotes modification of the NCEP/NCAR reanalysis fields according to the algorithms and method-
ology of Large and Yeager (2009); (5) all annual files for year 2005 carry the timestamp 06JUN2011 in line
with a bug fix resulting in non-monotonic calendars; (6) and that the temperature files for 1997 through 2004
inclusive have timestamp 10FEB2011 in line with the update descibed in appendix A3.5.

1.2.2. Padding of years for the IAF
The IAF datasets for CORE-IAF.v1 and CORE-IAF.v2 are split into individual

years with no overlap. The transition from one year to another is a detail that is left to
the respective modellers, as it is a function of the modeller’s time interpolation code.
At GFDL, we pad the corrected IAF data with a day on each side of the year boundary
in order to smoothly time interpolate from one year to another.

Note that for CORE-IAF.v2, we also provide the merged data files for all years
1948-2007. This single file should be usable by most time interpolation schemes for
running a single realization of the full dataset.

2. The CORE protocol and further details about the CORE datasets

We now present some comments on particular aspects of using the CORE datasets
for the purpose of running global ocean-sea ice climate models.

2.1. The CORE protocol in brief
The following summarizes the CORE protocol used for running global ocean-sea

ice climate models. More details are provided both in Griffies et al. (2009) and later in
this section.

• The ocean models are initialized using the January-mean potential temperature
and salinity from the Polar Science Center Hydrographic Climatology (PHC2; a
blending of the Levitus and coauthors (1998) data set with modifications in the
Arctic based on Steele et al. (2001)) More recent atlases may also be considered.
As both the NYF and IAF simulations are run no less than 300 years, fine details
of the initial conditions are not crucial. The sea ice models are generally begun
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with a state taken from an earlier simulation. The velocity fields typically start
from rest.

• The surface heat fluxes are determined by the radiative fluxes from CORE, and
turbulent fluxes computed based on the ocean state and CORE atmospheric state.
Bulk formulae for the turbulent fluxes follow that used at NCAR. There is no
restoring term applied to the surface temperature field.

• The surface salinity field is damped to a monthly climatology, with the climatol-
ogy following Doney and Hecht (2002).

• For the NYF simulations, the repeating seasonal cycle river runoff dataset (Sec-
tion 2.5) is used. For the IAF simulations, the interannually varying river dataset
is used (Section 2.5).

• For the NYF simulations, the model is run for no less than 500 years, which has
been found to be suitable for equilibrating the Atlantic meridional overturning
circulation in the simulations documented by Griffies et al. (2009).

• For the interannually varying simulations, the model is run for no less than five
repeating cycles of the 60-year forcing. Upon reaching the end of 2007, the forc-
ing is returned to 1948. Analysis of the ocean fields during the 5th cycle provides
the basis for comparing to other simulations. Note that the 60-year repeat cycling
introduces an unphysical jump in the forcing, with a notable warming trend over
the 60 years of the atmospheric data. Nonetheless, no agreeable alternative has
been proposed and tested.

2.2. Radiative heating
Radiative heating is provided from the shortwave and longwave datasets. The

shortwave and longwave datasets represent downwelling radiation. The net shortwave
radiation QSW net transferred into the ocean is a function of the albedo as shown by
equation (11) in Large and Yeager (2004). As discussed in Section 3.2 of Large and
Yeager (2009), a latitudinally dependent albedo is used to compute the net shortwave
in CORE-IAF.v2.

The net longwave radiation transferred into the ocean is given by the downwelling
longwave radiation minus the loss of heat associated with re-radiation to the atmo-
sphere as given by the Stefan-Boltzmann formulae σT 4 as shown by equation (12) in
Large and Yeager (2004).

The CORE datasets provide a single shortwave radiation field. However, many
ocean optics models make use of four different partitions of this shortwave field: visible
direct, visible diffuse, infrared direct, and infrared diffuse. NCAR recommends the
following partition of downward shortwave components for the purpose of mimicing a
more complete atmospheric radiation model:

Qvisible direct = 0.28 QSW net (1)
QIR direct = 0.31 QSW net (2)

Qvisible diffuse = 0.24 QSW net (3)
QIR diffuse = 0.17 QSW net (4)
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2.3. The importance of using the NCAR bulk formulae

There is generally no restoring to surface temperature. Instead, turbulent heat fluxes
are derived from the NCAR bulk formulae using the model SST and the 10 m atmo-
spheric fields, and radiative heating is provided by shortwave and longwave fluxes.

We initially tried to use the GFDL bulk formulae in our CORE-NYF.v1 simula-
tions. However, the fluxes produced from the two bulk formulae are quite distinct
when running with observed SSTs. In particular, the wind stresses are larger with the
GFDL formulation (which follows ECMWF) and the latent heat fluxes are larger with
the NCAR formulation. The differences have been traced to differences in the neu-
tral transfer coefficients (roughness lengths). As the forcing datasets developed using
the NCAR bulk formulae, we recommend using the same bulk formulae for CORE
experiments.

We originally went into the NCAR/GFDL comparison thinking that the bulk for-
mulae differences should lead to minor differences in the fluxes. However, the GFDL
formulae are somewhat different to NCAR’s. The resulting flux differences were too
large to ignore, with the goal being to run the models with the same forcing when the
SSTs were the same.

2.4. Details of the surface salinity and water forcing

The treatment of surface salt and/or water fluxes is the most problematic element in
the CORE protocol. Many issues were raised in Griffies et al. (2009), and we sumarize
these issues here.

2.4.1. Frozen and liquid precipitation
The uncorrected or raw precipitation file contains only liquid precipitation. How-

ever, the corrected file ncar precip.YYYY.05APR2010.nc (see Table 1) contains
both liquid and solid precipitation. The solid precipitation (SNOW) is determined
during the correction algorithm by the air temperature; if less than freezing, then the
precipitation is assumed to be snow.

2.4.2. Regarding the use of surface salt fluxes versus water fluxes
An ocean model that allows for the use of real water fluxes transferred across the

ocean surface, such as naturally occurs for free surface formulations, has the option of
applying the surface salt flux as a corresponding water flux. This approach, however,
is not encouraged, for the following reasons. First, the salt flux is an artifact of decou-
pling the ocean model from the atmosphere. It thus should be seen as a mere means to
keep the model’s overturning circulation from becoming overly unstable to allow for
the simulation to be of use for studying mechanisms of climate variability. Second, by
converting the salt flux to a fresh water flux, we are generally modifying the total water
added to the ocean, unless some form of a global normalization is applied. Modifi-
cations of water content, either local or global, induce a spurious barotropic flow, and
will generally corrupt the use of the simulation for studying sea level variations.
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2.4.3. Salinity restoring
As detailed in the Griffies et al. (2009) paper, different models may require differ-

ent restoring times for sea surface salinity to maintain a stable overturning circulation.
Such remains part of the art, rather than the science, of ocean-ice climate modelling.
It is therefore recommended that modellers garner experience via a selection of sim-
ulation tests prior to settling on a particular means to handle the salinity boundary
condition. The following summarizes some of the issues related to salinity restoring.

Relatively strong salinity restoring, analogous to the effective restoring of SSTs,
may reduce model drift in some cases. However, salinity restoring has no physical ba-
sis, and so it is desirable to use the weakest possible restoring. A weak restoring also
has the benefit of allowing increased variability in the surface salinity and deep circu-
lation. However, it can be associated with unphysically large variability and instability
in the overturning circulation.

When the salinity restoring and effective temperature restoring timescales are very
different, the experiment becomes analogous to a mixed boundary condition experi-
ment. The ability of mixed boundary conditions to represent the adjustment of the
ocean in the coupled system has been called into question. In particular, mixed bound-
ary condition experiments with strong temperature restoring have been shown to be
excessively susceptible to the polar halocline catastrophe, in which a fresh cap devel-
ops in high latitudes and shuts down overturning (Zhang et al., 1993).

The effective temperature restoring determined by numerically linearizing the CORE
thermal boundary condition is quite strong, yielding piston velocities around 1-2 m/day.
The salinity restoring strength chosen for a comparison between NCAR and GFDL
simulations with the normal year forcing was two orders of magnitude smaller than
this (50m/4years). Under these boundary conditions, the various models documented
in Griffies et al. (2009) behaved quite differently, with some groups favoring stronger
restoring to stabilize the Atlantic overturning.

Here is a summary of some further points to keep in mind regarding salinity forcing.

• GFDL and CSIRO use a real water flux instead of a salt flux. The salinity restor-
ing may be converted to a water flux, or may remain as a salt flux. In the original
simulations documented in Griffies et al. (2009), the salinity restoring was con-
verted to water flux. Recent experiments retain the salinity restoring as a salt
flux. The preference for salt flux is simply to maintain diagnostic control over
the total water budget arising from P-E+R, and to not have that budget confused
with added water from restoring.

• To ensure that there is no accumulation of salt in the model arising from the
salinity restoring, it is useful to remove the globally integrated salt content from
the restoring field at each model time step. Alternatively, when running with real
water fluxes, this normalization occurs so there is zero net water introduced to
the ocean due to the implied salinity restoring.

• As the ocean SST will deviate from that used to balance the dataset’s water con-
tent, there is no guarantee that the water will balance as the model integrates.
Hence, in addition to removing the global mean salt/water associated with the
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restoring, we recommend removing the global mean evaporation minus precipi-
tation minus river runoff that results from the bulk formulae. Again, this normal-
ization ensures that no water accumulates in the model, and the normalization is
applied at each model time step. An alternative is to apply a precipitation and
runoff correction factor which is computed for each year based on the change of
the global-mean salinity during that year. This factor is used to multiply the pre-
cipitation and runoff fluxes during the next year to partially balance evaporation.

• Some groups choose to eliminate surface salinity restoring at grid cells receiving
river runoff, so to not counteract the freshening by the overly salty values found
in the salinity restoring field used in CORE (Doney and Hecht, 2002). This
approach is not recommended for those who widely spread the river runoff, such
as that used by NCAR (see Figure 2).

2.5. River runoff

River runoff in Griffies et al. (2009) was based on an annual mean for each river
basin. However, recent updates from NCAR provide far more options with river runoff

forcing. Note that for either runoff dataset, we provide a remapping scheme which will
take the river data and map it onto a new grid, so long as the new grid is logically
rectangular (such as the tripolar grids used at GFDL and CSIRO).

2.5.1. Runoff in CORE Version 1
The river runoff data in CORE.v1 has only a single time step as it represents annual

mean runoff. This data has been spread out from the river mouths in a manner used
by NCAR for their climate models. This approach is thought to account for some
unresolved mixing that occurs at river mouths in nature.

2.5.2. Runoff in CORE Version 2
Two options for CORE.v2 river runoff are now available which differ substantially

from what was used in CORE.v1. These are a 12-month climatology

runoff.daitren.10202010.clim.nc

and a 720-month interannual dataset spanning 1948-2007

runoff.daitren.10202010.iaf.nc.

In both datasets, river discharge (in units of kg s−1 m−2) is provided at discrete river
mouth locations on a 1◦ ×1◦ global grid. The CORE.v2 files are similar to the distribu-
tions put together by Aiguo Dai and Kevin Trenberth in Dai and Trenberth (2002) and
Dai et al. (2009), which are distibuted publically at

http : //www.cgd.ucar.edu/cas/catalog/surface/dai − runoff/index.html

However, discrepancies identified in these distributions led to the generation of a mod-
ified dataset (Dai, personal communication 2010), which extend the interannual data
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and ensure compatibility between the 12-month climatological data and the interannual
data. We use this newest (October 2010) product from Aiguo Dai for CORE.v2.

Dai provided a runoff dataset from October 1947 through December 2006, and he
offered the following comments.

There are missing data for many rivers since Oct 2004 and these gaps
were infilled with latest 5yr mean values (i.e., Oct 1999-Sep 2004) for
each month. These are scaled discharge that includes the contribution
from unmonitored areas. The new data file was computed from com-
plete records infilled with Community Land Model version 3 (CLM3)-
simulated (through regression) flow for missing data gaps as discussed in
Dai et al. (2009). Just to be clear, these discharge data were mainly based
on actual measurements of river flow rates at the farthest downstream sta-
tions, with small data gaps being infilled with CLM3-simulated flow rates
(forced with observed precip etc) through regression, and scaled to repre-
sent the flow rates at river mouths, and further scaled to include contribu-
tions from drainage areas not monitored by the streamflow gauges.

These data were used to construct runoff.daitren.10202010.iaf.nc, with the 2007
monthly values filled with 5 year average values (from Oct 1999-Sep 2004). Further-
more, a time-invariant distribution of runoff along the coast of Antarctica was included.
Antarctic runoff is estimated to be 73000000 kg s−1 ( 0.073 Sv) based on P-E bal-
ance (Bill Large, personal communication). This runoff is distributed as a uniform flux
along the coastal points around the Antarctic continent (coastal points determined from
ETOPO bathymetry on the 1◦ × 1◦ grid). It enters the ocean as a liquid, so there is no
prescribed calving land ice.

The 12-month climatology is the long-term mean monthly average discharge based
on the interannual data computed over years October 1950 through September 1999. It
also includes the time-invariant Antarctic runoff. The globally-summed annual mean
river runoff from this file is:

• Global = 1.217 Sv (inclusive of Antarctica)

• Antarctica = 0.073 Sv

We note that the new global value is somewhat lower than the published value from
Dai et al. (2009).

2.5.3. Inserting river runoff into the ocean
Version 1 of CORE, based on Large and Yeager (2004), employed a single annual

mean river runoff that was pre-spread according to the needs from NCAR modelling.
The same approach was used by all groups in the Griffies et al. (2009) paper. Version 2
of CORE introduced the seasonally varying river runoff dataset from Dai et al. (2009),
as well as an interannually varying version (see Figure 1). However, the Dai et al.
(2009) river data is not pre-spread. So the user must choose how to insert river water
into the ocean.

At NCAR, river runoff is spread substantially prior to applying it as a flux into
the uppermost grid cell with a newer smoothing algorithm than was used in Large
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and Yeager (2004). The newer speading approach yields far less spreading than the
original Large and Yeager (2004) approach. GFDL MOM simulations choose to apply
two passes of a Laplacian filter (1-2-1 filter) in the horizontal to spread the river runoff

outward from the river insertion point. This spreading results in a rather tiny spread.
We illustrate the the three approaches in Figure 2. Notably, as detailed in Griffies
et al. (2005), river runoff is inserted to the GFDL-MOM simulations over the upper
four grid cells (roughly 40m). This insertion provides a poor-man’s parameterization
of tidal mixing near river mouths, and it may serve a similar purpose to the horizontal
spreading applied by NCAR. In so doing, it helps to mix the fresh water throughout the
upper four model grid cells, thus reducing the tendency for the simulation to produce a
highly stratified fresh cap at the river mouths.

1950 1960 1970 1980 1990 2000
1.1

1.12

1.14

1.16

1.18

1.2
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1.26

1.28

1.3
Global river runoff from Dai/Trenberth for CORE IAF

year

Sv

Figure 1: Time series for the annual mean global river runoff for the CORE-IAF simulations based on Dai
et al. (2009).

2.6. Air density and sea level pressure

The subroutine ncar ocean fluxes.f90 computes the exchange coefficients for
momentum, evaporation, and sensible heat according to the equations documented in
Large and Yeager (2004) (see their Section 2.1). After computing the exchange coef-
ficients, the model computes air-sea fluxes based on equations (4a)-(4d) in Large and
Yeager (2004). This calculation requires the air density. There are three ways to get
this density, each of which result in rather small differences.

• The air density at 10 m is provided in the uncorrected fields for version 2 of the
IAF. Large and Yeager present no corrections to this field, so it can be used in
CORE-IAF.v2.

• One may set air density to a constant 1.22kg m−3 (see Section 4.1 of Large and
Yeager (2004)).

• One may use the sea level pressure provided in the CORE datasets, and then use
the ideal gas law to compute the air density.
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Figure 2: Shown here is the log of the river runoff mass fluxes (kg m−2 s−1) used for the Large and Yeager
(2004) (top left); the 1988-2007 mean from Dai et al. (2009) as used in the CORE-IAF simulations using
GFDL-MOM (top right); and the newer approach used at NCAR (lower center). Note the large spreading
applied to the Large and Yeager (2004) river data, which is absent from the Dai et al. (2009) data. In fact,
there is a slight amount of spreading applied according to a Laplacian operator applied by the ocean, but that
spreading is very small relative to that used in the original Large and Yeager (2004) approach. The global
net mass flux into the ocean from the Large and Yeager (2004) runoff is 1.24 × 109 kg s−1, whereas the
1988-2007 time mean from Dai et al. (2009) is 1.22 × 109 kg s−1.

The preferred method depends on the structure of the flux computation code that
each modeler maintains. At GFDL, we use the sea level pressure and ideal gas law, so
we do not make use of the 10 m air density dataset.

2.7. Properly referenced meteorological data

Models should use properly referenced meteorological data consistent with what
the bulk formulae expect. Reanalysis meteorological data is commonly distributed at
2 m while oceanic turbulent transfer schemes often require 10 m data. For accuracy,
it is essential that the data be re-referenced to 10 m. The re-referencing algorithm and
the flux calculation algorithm are closely related. So, one should re-reference using a
scheme that is compatible with the flux scheme.

2.8. Same treatment of saltwater vapor pressure

Models should use the same treatment of saltwater vapor pressure. The vapor pres-
sure over seawater is about 2% less than that over fresh water. This difference is not
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negligible compared to the 20% subsaturation of marine air that drives evaporation.
Consequently, the effect should be included in all models participating in a compari-
son.

2.9. High frequency meteorological data

It is desirable to use high frequency meteorological data. A one month run of an
AMIP model was used to explore the flux errors associated with averaged meteorologi-
cal inputs. With daily winds, temperatures, and humidities, latent heat fluxes are under
estimated broadly over the winter storm track band by some 10’s of W m−2. There was
also a smaller underestimate located in the summer storm track band. Experiments
that refined the temporal resolution of the flux inputs individually showed that high
frequency winds are most important for reducing the error but temperature and specific
humidity frequency also contribute. When all inputs are given at 6 hourly frequency,
the global RMS error is about 1 W m−2 versus near 8 W m−2 for daily inputs.

2.10. Using ideal age and chlorofluorocarbons (CFCs)

To help with assessing the models’ mixing processes, ventilation rates, deep water
formation, and circulation characteristics under CORE forcing, we recommend that the
simulations include ideal age tracer and CFCs.

2.10.1. Ideal age tracer
A number of groups participating in CMIP3 and CMIP5 have included ideal age

tracer (Bryan et al., 2006; Gnanadesikan et al., 2007). This tracer (Thiele and Sarmiento,
1990; England, 1995) is set to zero in the model surface level/layer at each time step,
and ages at 1 yr/yr below. Furthermore, the tracer evolves according to the advection-
diffusion equation in the ocean interior just as a passive tracer. Ideal age is particularly
useful for revealing surface-to-deep connections in regions such as the Southern Ocean
where these connections have spatio-temporal variability. It can also be used to es-
timate uptake of anthropogenic tracers such as carbon dioxide (Russell et al., 2006).
Regions of low ventilation have the oldest waters while the younger waters indicate
recent contact with the ocean surface. For a proper comparison of model ideal age
distributions, we recommend that the ideal age be initialized with zero at the beginning
of the 300-year simulations (corresponding to five forcing cycles).

2.10.2. CFCs
The CFC-11 and CFC-12 have been increasingly utilized in evaluating OGCMs,

largely due to the following points.

• There is a good observational data base for comparison (the World Ocean Cir-
culation Experiment, WOCE, upon which Global Ocean Data Analysis Project,
GLODAP (Key et al., 2004) is largely based).

• There are well-known atmospheric concentrations that can be used to force the
ocean.

• The CFCs are inert in the ocean.
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The surface concentrations of CFC-12 and CFC-11 are available starting from 1931 and
1938, respectively. The associated fluxes should be calculated following the Ocean
Carbon Model Intercomparison Project (OCMIP-2) protocols (Dutay et al., 2002).
However, instead of the protocol specified fields, the CORE data sets should be used in
the flux equations.

There is a mismatch between the CFC and CORE data start dates. At NCAR, the
following approach is used. Recall that the CORE-IAF protocol calls for five forcing
cycles, i.e., a 300-year simulation. We introduce the CFC-12 and CFC-11 surface
fluxes at the beginning of model years 224 and 231, respectively, in the fourth forcing
cycle. Both CFCs are initialized with zero. These model years correspond to calendar
years 1991 and 1998, respectively, for the surface fluxes of heat, salt, and momentum in
the IAF cycle, while they correspond to calendar year 1931 for CFC-12 and calendar
year 1938 for CFC-11 surface fluxes. However, by the beginning of the fifth cycle
corresponding to model year 241 and calendar year 1948, all surface fluxes become
synchronous, i.e., the calendar years for the atmospheric data used in all surface flux
calculations are the same during the fifth cycle.

Another option is to simply introduce both CFCs at the beginning of the fifth cycle,
i.e., in year 1948. Because CFC concentrations are rather small during the years before
1948, this approach is sensible.

2.11. Two sample CORE-IAF experimental designs
We present here two examples of how groups have made use of the CORE-IAF

forcing.

2.11.1. CORE-IAF experimental design from Bergen
The following procedure is based on experience from the modeling group in Bergen,

Norway (Helge Drange: helge.drange@gfi.uib.no), with emphasis of the North
Atlantic subpolar gyre. We caveat the following discussions by noting that different
model systems may respond differently. Furthermore, some scientific problems may
require longer spin-up than the five cycles recommended here (e.g., the marine cy-
cling of carbon). Conversely, certain problems may require less cycles. Nonetheless,
the following procedure is offered as an example of what other groups may choose to
follow.

• Initialise the model based on climatological temperature and salinity fields, for
instance from the World Ocean Atlas

http : //www.nodc.noaa.gov/OC5/WOA05/pr woa05.html

and/or the Polar Science Center Hydrographic Climatology version 3.0 (PHC3.0)

http : //psc.apl.washington.edu/POLES/PHC/Paper98.html

The ocean velocity is zero and there is a 2 m thick sea ice cover with extent
according to climatology, for instance see

http : //nsidc.org/data/seaice index.
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• Spin up the model with daily varying reanalysis fields from CORE-IAF forcing
until a quasi-steady solution is obtained. Experience indicates that for studies
of the upper ocean, typically at least N=4 to N=6 cycles (240-360 years) are
required. Each cycle past the start is initialized by the ocean state at the end of
the previous cycle.

• During the spin-up phase, apply a relaxation of sea surface salinity (SSS) with a
relaxation time scale of 30 days for a 50m thick mixed layer, linearly decreasing
with thicker mixed layers. No relaxation of surface temperature is applied, since
the heat fluxes are computed from the bulk formulae. Additionally, there is no
relaxation of sub-surface waters nor under sea ice. Continental runoff is included
by adding freshwater into the appropriate coastal grid cells.

• Importantly, the mismatch between model and climatological sea surface salin-
ity, ∆(S S S ), is limited to

|∆(S S S )| < 0.5ppt (5)

in the computation of the surface salinity relaxation. This limit avoids extreme
relaxation fluxes that may occur, for example, in the vicinity of the western
boundary currents that are generally not realistically represented in coarse OGCMs.
If too much fresh water is added due to large biases in the western boundary cur-
rent, then this potentially large amount of fresh water will be transported pole-
ward, which will spuriously weaken the Atlantic overturning circulation. A sum-
mary of this unstable feedback is given in Griffies et al. (2009).

• If focusing on quantities such as the Atlantic overturning, then one should gauge
the degree of quasi-stationarity by examining the behaviour of the overturning.
Additionally, time series of temperature and salinity as a function of depth may
be used to determine suitability of the spin-up for studies being considered.

• When a quasi-steady solution is obtained after N cycles, the restoring surface
salinity flux is stored on the horizontal model grid, averaged over cycle N+1,
and saved with either weekly or daily temporal resolution.

• The production run starts with cycle N+2. Now the diagnosed, weekly or daily
averaged (but inter-annually invariant) salinity flux from cycle N+1 is applied.
In addition, the conventional surface salinity relaxation is applied, but with the
relaxation time reduced by an order of magnitude; e.g., to 360 or 720 days for a
50m thick upper ocean.

• It is the cycle N+2 that is used to focus analysis on the particular feature of
interest.

• Tests at GFDL indicates that the use of a diagnosed flux for the N+2 cycle can
lead to rapid drift in the Southern Ocean. It is for this reason that most groups
having used the CORE-IAF forcing do not choose this approach, preferring to
maintain the same salinity restoring for all cycles.
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2.11.2. CORE-IAF experimental design from NCAR
At NCAR, the ocean model is initialized using the January-mean potential tem-

perature and salinity from the PHC2 climatology (a blending of Levitus and coauthors
(1998) and Steele et al. (2001) data sets) and zero velocity. The sea-ice model is ini-
tialized with a state taken from a preliminary ocean-ice coupled simulation.

A weak salinity restoring is applied globally using a 4-year time scale over 50m,
including under ice covered regions, but excluding disconnected enclosed marginal
seas (e.g., Black Sea). The global-mean of this restoring flux is subtracted every time
step so that it does not impact the salinity budget. The salinity restoring data set is based
on the PHC2 monthly-mean climatology and includes the salinity enhancements along
the Antarctic coast described in Doney and Hecht (2002). There are no imposed limits
in these salinity restoring fluxes. A global precipitation correction factor is computed
for each year based on the change of the global-mean salinity during that year. This
factor is used to multiply the precipitation and runoff fluxes during the next year to
partially balance evaporation. The precipitation correction factor in practice is of little
consequence to the simulation.

In the disconnected marginal seas (e.g., Black Sea), strong restoring (25 days over
50 m) to PHC2 monthly climatology is applied for both potential temperature and
salinity as these regions are not connected to active oceans in any way; i.e., their states
do not feedback onto active oceans.

3. Closing comments

The CLIVAR WGOMD met in Venice, Italy during 11-13 January 2012. A major
effort arose to coordinate simulations from about 12 models using the CORE.v2-IAF
forcing and the protocol in Section 2.1. Analysis of the 5th cycle from these groups
will ensue during 2012, with the aim of writing a suite of comparison papers. These
notes will be updated as progress is made with the CORE-IAF comparison.
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Appendix A: The CORE dataset web pages

This appendix summarizes the material found on the CORE web pages. Version
one of the dataset, CORE.v1, is based on Large and Yeager (2004), and it is available
at

http://data1.gfdl.noaa.gov/nomads/forms/mom4/COREv1.html

This dataset has been updated by Large and Yeager (2009), which is known as the
version 2 dataset, CORE.v2. This updated dataset is available at

http://data1.gfdl.noaa.gov/nomads/forms/mom4/COREv2.html
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A1. Datasets

The CORE dataset web pages contain the following datasets.

• Version 1 datasets

– Uncorrected Normal Year Forcing (unCNYF.v1)

– Uncorrected Interannual Forcing (unCIAF.v1)

– Corrected Normal Year Forcing (CORE-NYF.v1)

– Corrected Interannual Forcing (CORE-IAF.v1)

• Version 2 datasets

– Uncorrected Normal Year Forcing (same as Version 1 unCNYF.v1)

– Corrected Normal Year Forcing (CORE-NYF.v2)

– Uncorrected Interannual Forcing (unCIAF.v2)

– Corrected Interannual Forcing (CORE-IAF.v2)

Each of the above datasets contain the following fields on a spherical grid of 192 lon-
gitude points and 94 latitude points (T62 atmospheric grid):

• river runoff (annual mean; and since Feb2011 a seasonal and interannual dataset;
see Section 2.5.2)

• monthly varying liquid (rain) and solid (snow) precipitation (12 time steps per
year)

• daily varying shortwave and longwave (365 time steps per year–no diurnal cycle
and no leap years),

• six-hourly varying 10 m temperature, density, specific humidity, zonal velocity,
meridional velocity, and sea level pressure (4 × 365 time steps per year–no leap
years).

A2. Support code and documentation

Besides the present set of notes and the datasets, the CORE web page also contains
the following files.

• Version 1 support files

– Large and Yeager (2004): This report details both the uncorrected and cor-
rected data sets used to produce the forcing fields. In particular, it provides
an atlas of the fluxes produced when using Reynolds SSTs and the NCAR
bulk formula to compute fluxes from the atmospheric state.

– Griffies et al. (2009): (CORE NYFv1.pdf): This manuscript documents
seven global ocean-ice models run with CORE-NYF.v1 for 500 years.
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– The Fortran code advance.f90 provided by NCAR corrects the raw data.
This code may be of use for those who compute the data corrections as the
model integrates.

– The Ferret code make data.csh provided by GFDL implements the algo-
rithms from advance.f90 in a Ferret script.

– The Fortran code ncar ocean fluxes.f90 provided by GFDL computes
the NCAR exchange coefficients recommended for use in CORE.

– The sea surface salinity restoring file PHC2 salx.nc provided by NCAR
for use in computing a restoring salt or fresh water flux with CORE.

• Version 2 support files

– The Large and Yeager (2009) paper documents the CORE-IAF.v2.

– README COREv2 is a README file for the release of CORE-v2.0 from
NCAR.

– The Fortran code datm physTN460.F90 provided by NCAR corrects the
raw data in the case that a user wishes to make the corrections during a run
(online) rather than prior to the run.

– The NetCDF file tn460nyf.correction factors.T62.121007.nc pro-
vides the correction factors that are applied to the uncorrected datasets if
users wish to run with datm physTN460.F90.

– The Ferret code make data CIAFv2.2008 06 18.csh (updated July 2008
from the original file make data CIAFv2.2008 04 22.csh) represents
the GFDL implementation in a Ferret script of algorithms from the NCAR
file datm physTN460.F90.

– The Fortran code ncar ocean fluxes.f90 provided by GFDL computes
the NCAR exchange coefficients recommended for use in CORE. This is
the same file as in the Version 1 release.

– The sea surface salinity restoring file PHC2 salx.nc provided by NCAR
for use in computing a restoring salt or fresh water flux with CORE. This
is the same files as the Version 1 release.

– A unix shell script get COREv2 data.csh to download the forcing files.

– Feb 2011: for the update to the surface air temperature as per Nudds et al.
(2010), we provide the Ferret script that covers years 1997 thru 2004:
make data CIAFv2 AirTemponly.csh.

We provide both the uncorrected and corrected forcing fields for two reasons.

• The user may wish to run simulations as at NCAR whereby corrections are ap-
plied to the uncorrected fields at runtime by using advance.f90 for CORE.v1 or
datm physTN460.F90 for CORE.v2. This procedure facilitates further refine-
ment to the corrections without needing to generate a new “corrected” dataset.

• At GFDL, we perform corrections prior to runtime using the above Ferret script.
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A3. Releases of CORE-IAF.v2

This section documents the releases of CORE-IAF.v2.

A3.1. May 2008: Initial Release

The initial release of CORE-IAF.v2 occurred near the end of May 2008.

A3.2. July 2008: Bug Fix

Soon after the first release, the following two problems were identified:

• The air temperature was about 20◦C−30◦C warmer around Antarctica than with
the CORE-IAF.v1 release. This spurious result arose from a bug in the Ferret
script make data CIAFv2.csh used to implement the Large and Yeager correc-
tions, where

let cfac=cos(atan(1)*8/1460-0.298)

should in fact read

let cfac=cos(atan(1)*8*l[g=t 10]/1460-0.298)

The bug also spuriously affected the precipitation field, since air temperature
determines how precipitation is partitioned into liquid and solid.

• The netCDF data files in CORE-IAF.v2 had a time axis which could lead to prob-
lems with runs over multiple years. Andrew Wittenberg at GFDL has provided a
self-consistent time axis for the various data files in the 8 July 2008 release.

The 8July2008 bug fix release of the CORE-IAF.v2 dataset has updated ALL of the
datafiles.

A3.3. June 2009 extended data

In June 2009, we extended the interannual dataset from 1958 back to 1948 for
Version 2 of the IAF. Because the calendar meta-information changed in the datafiles,
from origin at 1958 to new origin at 1948, we replaced ALL of the data files for the
IAF. The data did not change for the years 1958-2006, but the calendar did, with the
new origin.

Note that in addition to providing each data file split into individual years, there is
also a merged data file for each forcing field, containing all of the years 1948-2006.

A3.4. January 2010 extended data and re-synchronization with NCAR

Early 2010, we released an extra year of data, year 2007. In addition, NCAR
updated the full 60 years of uncorrected data. This new version of the uncorrected data
has some differences from the previous releases, thus making the corrected data differ
as well.
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A3.5. February 2011: updates to SAT and runoff
In February 2011, we released some corrections to the surface air temperature for

years 1997-2004, as identified by Nudds et al. (2010). We also released a new river
runoff dataset, including a monthly climatology and interannual dataset. Details of the
river runoff dataset are given in Section 2.5.

A4. Future releases

A frequent request from the research community is to keep the CORE forcing up-
dated to the nearest year, or even nearest month, with realtime. Alas, such requests go
unfulfilled given resource constraints on those supporting the data. Additionally, the
datasets that form the basis for CORE are in some cases not released to the public on a
realtime basis. It is for these reasons that CORE data will likely be updated at roughly
a two year periodicity for the near future.
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