Marine Biogeochemistry in NEMO System

Christian Ethé CNRS/IPSL

• The current system (in FORTRAN 90):

Figure from ESOPA : http://www.lodyc.jussieu.fr/NEMO

TOP : Tracers in the Ocean Paradigm

OGCM OPA

> Online

- ✓ The tracers models are include with a CPP key *key_passivetrc*
- \checkmark The evolution of tracers is computed along with the dynamics
- \checkmark No feedbacks from the biogeochemistry on the dynamics
- \checkmark 3 entry points : 1 initialization, 1 time stepping, 1 output

> Offline

- \checkmark The offline code is a simplified OPA 9 model
- \checkmark Fields of advection and diffusion are read from several files instead of being computed
- \checkmark No constraint on the time sampling in the inputs files

Tracer transport model

- \checkmark The code is based on the dynamical model : it has been written from the subroutine of T & S
- ✓ Same numerical advection schemes : Arakawa, TVD, MUSCL and diffusion : laplacian or biharmonic
- \checkmark Restoring to climatological fields or observations is coded

Coupling online with OPA

- \checkmark The transport model can be called every Nth dynamical time step
- ✓ Numerical scheme can be selected independently parameters are specified in a specific namelist

Geochemicals models

The geochemical models do not include a description of marine biology activity.

They are generally ligth with a few processes to describe -

 ✓ Age tracer : 2 tracers whose combination gives the age and the proportion of a specified water mass

✓ CFC's : 1 or 2 tracers for CFC-11 and/or CFC-12

✓ DIC-12 and DIC-14 : 2 tracers modeled according to OCMIP protocol

2 biogeochemicals models : PISCES & LOBSTER

2 ecosystems models which all include a description of the biology activity in the ocean :

NPZD (Nitrogen-Phytoplankton-Zooplankton-Detritus) models with compartments to represent the different living or non-living pools.

Include the carbon cycle and the oxygen

Coupling with the transport model

- ✓ For each sms model : 1 specific common file, 1 specific parameter file, 1 specific namelist file
- \checkmark 2 entry points : 1 for initialization, 1 for time evolution
- Time step for sms model = time step for transport model except for PISCES : computational of biological terms can be called several times by time step
- ✓ 2 outputs files : 1 for the tracer concentrations, 1 for the additional biogeochemical fluxes (optional)

- ✓ Full mpp capabilities
- \checkmark 1D vertical configuration for online and offline versions
- ✓ AGRIF suitable for TOP and zooming option available but not open boundaries
- \checkmark Initialisation from analytical distributions or from files
- \checkmark Grid degradation for speed-up offline spin-up
- \checkmark Spectral particule model in PISCES (Kriest parameterisation)
- \checkmark Trends in the mixed layer or euphotic layer

Performances on NEC-SX8

	# procs	Time step	CPU time/year	Memory size used	GFlops	V. Op. Ratio
ORCA2-LIM-PISCES (182 × 149 × 31) Online version	1	Ocean : 1h 36 mn Ice : 8 h Transport : 1h 36 mn Bio : 24 mn	3 h 05 mn	3.4 Gb	3.2	99.65%
ORCA2-PISCES (182 × 149 × 31) Offline version	1	Transport : 7h 18mn Bio : 1h 49 mn	36 mn	2.4 Gb	6.4	99.62%

Performances on the Earth Simulator for higher resolution models

	# procs	Time step	CPU time/year	Memory size used	GFlops	V. Op. Ratio
ORCA05-LIM-PISCES (722 × 511 × 31) Online version	64	Ocean : 36 mn Ice : 3 h Transport : 36 mn Bio : 36 mn	3 h	100 <i>G</i> Ь	167	99.45%
GYRE-LOBSTER (1/27° × 1/27°) (812 × 542 × 31)	78	Ocean : 5 mn Transport : 5 mn Bio : 5 mn	9 h	73 <i>G</i> b	171	99.32%

✓ Merge of dynamical transport and passive tracer transport models

✓ Optimisation of memory for PISCES model : necessary for higher resolution configuration

✓ Redesign of biological components : rewritting of LOBSTER and PISCES in
F90 and share some processes like gas exchange, optics, chemistry)

 \checkmark Include of a sediment model : stand-alone or coupled with PISCES

 \checkmark Biological trends in the mixed-layer and in the euphotic layer

Wiki page :

http://www.lodyc.jussieu.fr/NEMO/wiki/index.php/BiogeochemicalComponent