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 Materials and Methods 

Samples for fluorometric analysis of Chl a were filtered onto 25 mm Whatman GF/F filters (nominal pore size 

0.7 µm) placed in 5 mL of 90% acetone, and extracted in the dark at 3ºC for 24 hrs.  Chl a was measured 

fluorometrically (7) using a Turner Fluorometer 10-AU (Turner Designs, Inc.).   

Particulate organic carbon samples were collected by filtering sub-samples onto pre-combusted (450°C for 4 

hrs) 25 mm Whatman GF/F filters.  The filters were immediately dried at 60°C and stored dry until analysis.  Prior 

to analysis, the samples were fumed with concentrated HCl, dried at 60°C, and packed into tin capsules (Costech 

Analytical Technologies, Inc.) for elemental analysis on a Carlo-Erba NA-1500 elemental analyzer.  Peach leaves 

and glutamic acid were used as a calibration standard. 

The maximum efficiency of photosystem II (Fv:Fm) was determined by fast repetition rate fluorometry (FRRf) 

(8) on samples collected with Niskin bottles.  Samples were dark acclimated for ~30 min at in situ temperatures 

before measurement with the FRRf.  Blanks for individual samples analyzed by FRRf were prepared by gentle 

filtration through a 0.2 µm polycarbonate syringe filter before measurement using identical protocols.  All Fv:Fm 

values were corrected for blank effects (9). 

Photosynthesis versus irradiance relationships (P*m, α*, Ek) were determined using a modified 14C-bicarbonate 

incorporation technique (10-11).  Carbon uptake, normalized by Chl a concentration, was calculated from 

radioisotope incorporation, and the data were fit by least squares nonlinear regression (12).  P-E parameters were 

used with under-ice light profiles to estimate rates of depth-integrated daily gross primary production.  Specific 

growth rate (µ, d-1) in surface waters was calculated by multiplying the photosynthetic rate (P*) by the POC:Chl a 

ratio. 

Water samples collected from Niskin bottles were analyzed for nitrate (NO3) and nitrite (NO2) concentrations 

with a Seal Analytical continuous-flow AutoAnalyzer 3 (AA3) using a modification of the Armstrong et al. (13) 

procedure.  For the NO3 analysis, seawater samples were passed through a cadmium reduction column where NO3 

was quantitatively reduced to NO2.  Sulfanilamide was then introduced to the sample stream followed by N-(1-

naphthyl) ethylenediamine dihydrochloride which couples to form a red azo dye.  The stream was then passed 

through a flow cell and the absorbance measured at 520 nm.  The same technique was employed for NO2 analysis, 



except the cadmium column was bypassed.  Absorbance vs. concentration standard curves were used to determine 

the molar concentration of the combined [NO3+NO2] and NO2 alone.   

Seawater samples for DIC were drawn from the Niskin samplers into pre-cleaned ~300 mL borosilicate bottles, 

poisoned with HgCl2 to halt biological activity, sealed, and returned to the Bermuda Institute of Ocean Sciences 

(BIOS) for analysis.  DIC samples were analyzed using a highly precise (~0.025%; <0.5 mmoles kg-1) gas 

extraction/coulometric detection system (14).  Analyses of Certified Reference Materials (provided by A. G. 

Dickson, Scripps Institution of Oceanography) ensured that the accuracy of the DIC and TA measurements was 

0.05% (~0.5 mmoles kg-1) and 0.1% (~2 mmoles kg-1), respectively. 

Phytoplankton assemblage composition was examined using imaging-in-flow cytometry, where high-speed 

photomicrographs of individual cells and chains were identified to the genus level or better using automated 

classification (15) followed by manual verification. 

 

Fig. S1.  MODIS-Aqua satellite image of the northern Chukchi Sea showing the distribution of sea ice on 8 July 

2011 and the location of stations sampled during the ICESCAPE 2011 cruise.  Black indicates open water.  

Lines show the position of the ice edge on the indicated dates (AMSR-E).  Stations 46-57 are part of Transect 1 

and stations 57-71 are Transect 2.  
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