

Supplementary Materials for

Massive Phytoplankton Blooms Under Arctic Sea Ice

Kevin R. Arrigo, ** Donald K. Perovich, **2,3 Robert S. Pickart, ** Zachary W. Brown, **1 Gert L. van Dijken, **1 Kate E. Lowry, **1 Matthew M. Mills, **1 Molly A. Palmer, **1 William M. Balch, **5 Frank Bahr, **4 Nicholas R. Bates, **6 Claudia Benitez-Nelson, **7 Bruce Bowler, **5 Emily Brownlee, **8 Jens K. Ehn, **8 Karen E. Frey, **10 Rebecca Garley, **6 Samuel R. Laney, **8 Laura Lubelczyk, **5 Jeremy Mathis, **11 Atsushi Matsuoka, **12 B. Greg Mitchell, **9 G. W. K. Moore, **13 Eva Ortega-Retuerta, **14 Sharmila Pal, **7 Chris M. Polashenski, **2 Rick A. Reynolds, **9 Brian Schieber, **9 Heidi M. Sosik, **8 Michael Stephens, **15 James H. Swift**

¹Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA.
²Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory,
Hanover, NH 03755, USA. ³Thayer School of Engineering, Dartmouth College, Hanover, NH 03755,
USA. ⁴Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA
02543, USA. ⁵Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, USA.
⁶Bermuda Institute of Ocean Sciences, Ferry Reach GE01, Bermuda. ⁷Marine Science Program and
Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA.
⁸Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. ⁹Scripps
Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA. ¹⁰Graduate
School of Geography, Clark University, Worcester, MA 01610, USA. ¹¹School of Fisheries and Ocean
Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA. ¹²Universite Pierre et Marie Curie,
Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer 06238, France. ¹³Department of
Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada. ¹⁴Laboratoire d'Océanographie
Microbienne, Observatoire Océanologique, Centre Nationale de la Recherche Scientifique et Université
Paris Pierre et Marie Curie, Banyuls/Mer 66650, France. ¹⁵Colby College, Waterville, ME 04901, USA.

*To whom correspondence should be addressed. E-mail: arrigo@stanford.edu

Published 7 June 2012 on *Science* Express DOI: 10.1126/science.1215065

This PDF file includes:

Materials and Methods Fig. S1 References

Correction: The reference citations in the Materials and Methods section have been corrected.

Materials and Methods

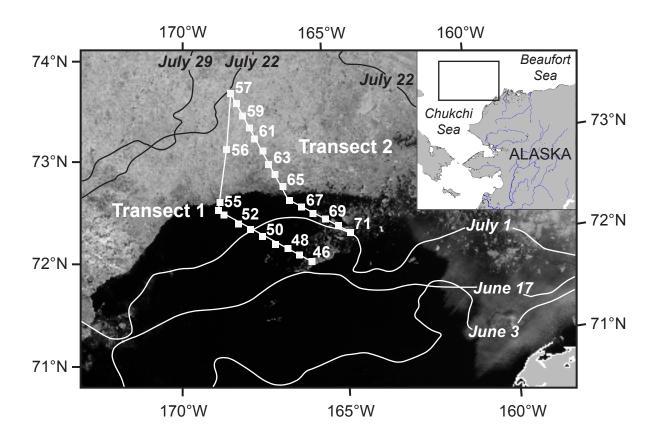
Samples for fluorometric analysis of Chl *a* were filtered onto 25 mm Whatman GF/F filters (nominal pore size 0.7 μm) placed in 5 mL of 90% acetone, and extracted in the dark at 3°C for 24 hrs. Chl *a* was measured fluorometrically (7) using a Turner Fluorometer 10-AU (Turner Designs, Inc.).

Particulate organic carbon samples were collected by filtering sub-samples onto pre-combusted (450°C for 4 hrs) 25 mm Whatman GF/F filters. The filters were immediately dried at 60°C and stored dry until analysis. Prior to analysis, the samples were fumed with concentrated HCl, dried at 60°C, and packed into tin capsules (Costech Analytical Technologies, Inc.) for elemental analysis on a Carlo-Erba NA-1500 elemental analyzer. Peach leaves and glutamic acid were used as a calibration standard.

The maximum efficiency of photosystem II (Fv:Fm) was determined by fast repetition rate fluorometry (FRRf) (8) on samples collected with Niskin bottles. Samples were dark acclimated for ~30 min at in situ temperatures before measurement with the FRRf. Blanks for individual samples analyzed by FRRf were prepared by gentle filtration through a 0.2 μm polycarbonate syringe filter before measurement using identical protocols. All Fv:Fm values were corrected for blank effects (9).

Photosynthesis versus irradiance relationships (P^*_m , α^* , E_k) were determined using a modified ¹⁴C-bicarbonate incorporation technique (*10-11*). Carbon uptake, normalized by Chl a concentration, was calculated from radioisotope incorporation, and the data were fit by least squares nonlinear regression (*12*). P-E parameters were used with under-ice light profiles to estimate rates of depth-integrated daily gross primary production. Specific growth rate (μ , d^{-1}) in surface waters was calculated by multiplying the photosynthetic rate (P^*) by the POC:Chl a ratio.

Water samples collected from Niskin bottles were analyzed for nitrate (NO₃) and nitrite (NO₂) concentrations with a Seal Analytical continuous-flow AutoAnalyzer 3 (AA3) using a modification of the Armstrong *et al.* (13) procedure. For the NO₃ analysis, seawater samples were passed through a cadmium reduction column where NO₃ was quantitatively reduced to NO₂. Sulfanilamide was then introduced to the sample stream followed by N-(1-naphthyl) ethylenediamine dihydrochloride which couples to form a red azo dye. The stream was then passed through a flow cell and the absorbance measured at 520 nm. The same technique was employed for NO₂ analysis,


except the cadmium column was bypassed. Absorbance vs. concentration standard curves were used to determine the molar concentration of the combined $[NO_3+NO_2]$ and NO_2 alone.

Seawater samples for DIC were drawn from the Niskin samplers into pre-cleaned ~300 mL borosilicate bottles, poisoned with HgCl₂ to halt biological activity, sealed, and returned to the Bermuda Institute of Ocean Sciences (BIOS) for analysis. DIC samples were analyzed using a highly precise (~0.025%; <0.5 mmoles kg⁻¹) gas extraction/coulometric detection system (*14*). Analyses of Certified Reference Materials (provided by A. G. Dickson, Scripps Institution of Oceanography) ensured that the accuracy of the DIC and TA measurements was 0.05% (~0.5 mmoles kg⁻¹) and 0.1% (~2 mmoles kg⁻¹), respectively.

Phytoplankton assemblage composition was examined using imaging-in-flow cytometry, where high-speed photomicrographs of individual cells and chains were identified to the genus level or better using automated classification (15) followed by manual verification.

Fig. S1. MODIS-Aqua satellite image of the northern Chukchi Sea showing the distribution of sea ice on 8 July 2011 and the location of stations sampled during the ICESCAPE 2011 cruise. Black indicates open water.

Lines show the position of the ice edge on the indicated dates (AMSR-E). Stations 46-57 are part of Transect 1 and stations 57-71 are Transect 2.

References and Notes

- 1. K. R. Arrigo, G. L. van Dijken, Secular trends in Arctic Ocean net primary production. *J. Geophys. Res.* **116**, C09011 (2011). doi:10.1029/2011JC007151
- 2. Materials and methods are available as supplementary materials on *Science* Online.
- 3. J. Zhang *et al.*, Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. *J. Geophys. Res.* **115**, C10015 (2010). doi:10.1029/2009JC005387
- 4. V. H. Strass, E.-M. Nöthig, Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. *Polar Biol.* **16**, 409 (1996). doi:10.1007/BF02390423
- 5. C. J. Mundy *et al.*, Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. *Geophys. Res. Lett.* **36**, L17601 (2009). doi:10.1029/2009GL038837
- 6. M. Fortier, L. Fortier, C. Michel, L. Legendre, Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. *Mar. Ecol. Prog. Ser.* **225**, 1 (2002). doi:10.3354/meps225001
- 7. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, J. D. H. Strickland, Fluorometric determination of chlorophyll. *ICES J. Mar. Sci.* **30**, 3 (1965). doi:10.1093/icesjms/30.1.3
- 8. Z. S. Kolber, O. Prasil, P. G. Falkowski, Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. *Biochimica Biophysica Acta Bioenergetics* **1367**, 88 (1998). doi:10.1016/S0005-2728(98)00135-2
- 9. J. J. Cullen, R. F. Davis, Limnol. Oceanogr. Bull. 12, 29 (2003).
- 10. M. R. Lewis, J. C. Smith, A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. *Mar. Ecol. Prog. Ser.* **13**, 99 (1983). doi:10.3354/meps013099
- 11. K. R. Arrigo *et al.*, Photophysiology in two major Southern Ocean phytoplankton taxa: Photosynthesis and growth of *Phaeocystis antarctica* and *Fragilariopsis cylindrus* under different irradiance levels. *Integr. Comp. Biol.* **50**, 950 (2010). doi:10.1093/icb/icq021 Medline
- 12. T. Platt, C. L. Gallegos, W. G. Harrison, J. Mar. Res. 38, 687 (1980).
- 13. F. A. J. Armstrong, C. R. Stearns, J. D. H. Strickland, *Deep-Sea Res.* **14**, 381 (1967).
- 14. N. R. Bates, M. H. P. Best, D. A. Hansell, Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas. *Deep Sea Res. Part II Top. Stud. Oceanogr.* **52**, 3303 (2005). doi:10.1016/j.dsr2.2005.10.005
- 15. H. M. Sosik, R. J. Olson, Automated taxonomic classification of phytoplankton sampled with imaging in-flow cytometry. *Limnol. Oceanogr. Methods* **5**, 204 (2007). doi:10.4319/lom.2007.5.204