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A B S T R A C T

We used an offline tracer transport model, driven by reanalysis ocean currents and coupled to a simple biogeochemical

model, to synthesize the surface ocean pCO2 and air–sea CO2 flux of the global ocean from 1996 to 2004, using a

variational assimilation method. This oceanic CO2 flux analysis system was developed at the National Institute for

Environmental Studies (NIES), Japan, as part of a project that provides prior fluxes for atmospheric inversions using

CO2 measurements made from an on-board instrument attached to the Greenhouse gas Observing SATellite (GOSAT).

Nearly 250 000 pCO2 observations from the database of Takahashi et al. (2007) have been assimilated into the model

with a strong constraint provide by ship-track observations while maintaining a weak constraint of 20% on global

averages of monthly mean pCO2 in regions where observations are limited. The synthesized global air–sea CO2 flux

shows a net sink of 1.48 PgC yr−1. The Southern Ocean air–sea CO2 flux is a sink of 0.41 PgC yr−1. The interannual

variability of synthesized CO2 flux from the El Niño region suggests a weaker source (by an amplitude of 0.4 PgC yr−1)

during the El Niño events in 1997/1998 and 2003/2004. The assimilated air–sea CO2 flux shows remarkable correlations

with the CO2 fluxes obtained from atmospheric inversions on interannual time-scales.

1. Introduction

Ongoing anthropogenic emissions have caused an increase in the

atmospheric concentrations of carbon dioxide (CO2) from a pre-

industrial value of 270 ppm to the present-day value of 380 ppm

(Keeling et al., 1982). However, the present-day concentration

of anthropogenic CO2 in the atmosphere represents only half

of the net emissions caused by human activities: the other half

is absorbed by the terrestrial biosphere and the ocean, thereby

moderating the net increase in atmospheric CO2 concentrations.

Uncertainties exist in any quantitative measure of the uptake of

atmospheric CO2 by the land biosphere and the ocean ecosys-

tem, regardless of the calculation method. These uncertainties

arise mainly because of the practical difficulties involved in di-

rect estimates of fluxes between the atmosphere and the ocean

or land surface. Moreover, there are few observational data with

which to quantify the net exchange of CO2. Here, we present a

strategy of estimating the exchange of CO2 between the ocean

and the atmosphere. We adapt the usual strategy of biogeochem-

ical cycle modelling in an offline ocean circulation model, with
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the important addition of constraining the pCO2 of the modelled

surface ocean using observations in a variational assimilation

system.

Previous air–sea CO2 flux estimates, as calculated from a

large number of surface ocean pCO2 observations, suggest that

the ocean absorbs nearly 1.5 petagrams of carbon (PgC) each

year (Takahashi et al., 2009). This annual mean uptake varies

interannually depending on climate mode anomalies such as El

Niño (during El Niño years, the uptake is generally 0.5 PgC

more than the annual mean), the Pacific Decadal Oscillation,

and the North Atlantic Oscillation (Feely et al., 1999; Le Quere

et al., 2000; Obata and Kitamura, 2003; Keeling et al., 2004;

McKinley et al., 2004; Patra et al., 2005; Wetzel et al., 2005;

Lenton and Matear, 2007; Le Quere et al., 2007; Thomas et al.,

2008).

The most common strategies employed in estimating air–sea

CO2 fluxes are as follows: (a) In the ‘top-down’ approach,

sources and sinks are estimated from observations of atmo-

spheric CO2 concentrations and Greens functions (i.e. the trans-

port of CO2 concentrations) derived from transport models. This

method is known as inverse modelling of sources and sinks

(Gurney et al., 2004; Patra et al., 2005; Jacobson et al., 2007;

Gruber et al., 2009). However, the efficiency of this method re-

lies on the total number of observations from land-based tower

Tellus 62B (2010), 5 821

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES B

CHEMICAL

AND PHYSICAL 

METEOROLOGY



822 V. VALSALA AND S. MAKSYUTOV

stations and the regional distribution of the stations (Patra and

Maksyutov, 2002). Because of the limited number of observa-

tion data, as well as the biases inherent in transport models,

the inverse method involves large uncertainties. The direct as-

similation of CO2 observations into transport models also of-

fers optimized estimates of CO2 fluxes (Baker et al., 2006;

Yumimoto and Uno, 2006). (b) The second method is a ‘bottom-

up’ approach, in which process models of oceanic biogeochem-

ical cycles are incorporated into a general circulation model,

yielding estimates of CO2 gas exchange. This approach involves

uncertainty related to our limited knowledge of the key pro-

cesses that govern the carbon cycle of the terrestrial biosphere

and the ocean ecosystem. Previous studies have examined the

assimilation of various types of data into biogeochemical mod-

els (Tjiputra et al., 2007). (c) It is also possible to measure the

isotopic ratios of CO2 in the atmosphere and thereby perform

indirect measurements of CO2 exchange among the terrestrial

biosphere, ocean, and atmosphere (Keeling et al., 2001). (d)

Mean global air–sea CO2 fluxes can also be estimated from di-

rect observations of oceanic partial pressure of CO2 (pCO2) and

gas exchange coefficients (Takahashi et al., 2009). However, the

sparse coverage of pCO2 data requires large-scale interpolation

to perform analyses in the global domain. Gruber et al. (2009)

compared global estimates of air–sea CO2 fluxes obtained using

these various methods, revealing a general consistency, although

with regional-scale inconsistencies.

Here, we present a bottom-up approach to estimating air–sea

CO2 fluxes, with an important modification compared with ex-

isting approaches: that is simulated surface ocean pCO2 is con-

strained with available ship observations between 1996 and

2004. This approach provides model-predicted, interannually

varying, error-minimized estimates of global air–sea CO2 flux.

This oceanic CO2 flux analysis system was developed at the Na-

tional Institute for Environmental Studies (NIES), Japan, as part

of a project designed to provide prior fluxes for atmospheric

inversions using CO2 observations performed by an on-board

instrument attached to the Greenhouse gas Observing SATellite

(GOSAT).

Global oceanic pCO2 observations have been carried out by

several research programs. The World Ocean Circulation Exper-

iments (WOCE), Joint Global Ocean Flux Study (JGOFS) and

Voluntary Ship of Opportunity (VOP) observation programs,

among others, are some of the major programs to collect surface

ocean carbon data. Takahashi et al. (2009) combined all these

pCO2 observations into monthly climatological maps on a global

scale. However, the aggregation of multi-year pCO2 observa-

tions into monthly climatology results in the loss of valuable

information regarding the interannual variability of pCO2 and

air–sea CO2 fluxes. In contrast, by using multi-year individual

observations of pCO2 as a constraint on a process model, it would

be possible to resolve valuable information regarding the inter-

annual variability of air–sea CO2 fluxes, at least on the regional

scale, for which frequent observations of pCO2 are available.

In this study, we used multi-year pCO2 data to constrain the

model pCO2. The results demonstrate the potential benefits of

using pCO2 observations as constraints when minimizing model

biases and errors.

To minimize the model error via the assimilation of ob-

served pCO2, we derived a simple biogeochemical model from

McKinley et al. (2004). In this model, the net export produc-

tion in the euphotic zone is estimated from the relation between

phosphorus, light availability and primary production, and is

then scaled by a regional mask to represent other processes that

limit the primary production, such as Fe availability and grazing

efficiency. The net export production is then converted to equiv-

alent dissolved inorganic carbon (DIC) consumption within the

euphotic zone, using a Redfield ratio. Below the euphotic zone,

re-mineralization returns DIC that is exported to the deep ocean.

We adopt this simplified ecosystem model for two reasons: (1)

our aim is to utilize observations of surface ocean pCO2 as a

main constraint on modelled pCO2 values, and (2) the construc-

tion of an adjoint is simpler if the ecosystem is limited to one

component and the adjoint can be limited to one control variable

(i.e. DIC).

The remainder of the paper is organized as follows. Sec-

tion 2 describes the physical and biogeochemical models, and

the method of constraining modelled pCO2. The results are pre-

sented in Section 3 and a comparison of our assimilated model

output with data from other sources are given in Section 4. The

results are discussed in Section 5.

2. Physical, biogeochemical models
and experiments

2.1. Physical model

We used a simple biogeochemical model coupled to an ocean

tracer transport model driven by reanalysis ocean data. The

transport model is the Offline ocean Tracer Transport Model

(OTTM), as documented in Valsala et al. (2008). In this model,

two-dimensional circulation, temperature, salinity and other di-

agnostic physical parameters are taken from ocean reanalysis

data and used to evolve a tracer. The tracer of interest is DIC,

which is a collection of carbonate (CO2−
3 ), bicarbonate (HCO−1

3 )

and dissolved CO2 gas. We used the reanalysis products pro-

vided by the Geophysical Fluid Dynamics Laboratory (GFDL),

NOAA, Princeton, USA, as offline physical circulation. This

study uses the data available between 1975 and 2004.

OTTM has self-operating diagnostic mode vertical mixing

and subgrid-scale process parameterization schemes, because

the coefficients for these processes are not readily available

from the reanalysis data; instead, they were estimated within

the offline model. Vertical mixing is represented as a combi-

nation of the K-Profile Parameterization (KPP; Large et al.,

1994) and a background vertical diffusion suggested by Bryan

and Lewis (1979). Horizontal diffusion is a combination of
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flow-dependent diffusion, in which the coefficients are propor-

tional to the stress and strain experienced in the local fluid vol-

ume (Griffies and Hallberg, 2000), and advection fluxes due to

eddy-induced transport (Gent and McWilliams, 1990).

The data for horizontal advection were taken from the of-

fline data archive, whereas vertical velocities were calculated

based on the principles of mass conservation. The free-surface

kinematic boundary condition was determined from the sea sur-

face height. OTTM transport was extensively tested in a previ-

ous study by simulating chlorofluorocarbon (see Valsala et al.,

2008); this earlier study also contains details of the model de-

sign and validation. The exaggerated vertical mixing found in

OTTM within the tropics, as reported by Valsala et al. (2008),

was resolved by further tuning of the model in this study.

2.2. Chemical model

The chemical compartment of the biogeochemical model con-

sists of a single tracer (DIC). pCO2 was treated as being in near-

equilibrium with the atmosphere at the sea surface via air–sea

gas exchange. Within the ocean, DIC consists of CO−2
3 , HCO−1

3 ,

and dissolved gaseous CO2, although they are transported as

a single tracer (DIC). This approach corresponds to the sol-

ubility pump model described in Ocean Carbon Cycle Inter

Comparison Project-II (OCMIP-II; Orr et al., 1999, available

at http://www.ipsl.jussieu.fr/OCMIP/).

Air–sea gas exchange depends on piston velocity Kw and the

difference in pCO2 between the surface ocean and the ambi-

ent atmosphere above. Because the focus of this study is the

contemporary air–sea CO2 flux, a constant atmospheric pCO2

of 368 µatm (as observed in 2000) was used. Alkalinity [taken

as total alkalinity (TA)] was not transported but was estimated

from the reanalysis salinity inputs with a constant conversion

factor of 2310 µeq kg−1 as, T A = 2310S/Sg, in which S is the

local surface salinity and Sg is the annual mean surface salinity,

integrated globally. This relation is taken from the OCMIP-II

protocol (Orr et al., 1999).

The air–sea flux in the chemical model was formulated as

φGASEX = Kw(pCO2OCEAN − pCO2AIR). Model pCO2 was cal-

culated using the routines provided in OCMIP-II (Orr et al.,

1999). The term Kw is the piston velocity at which gaseous

CO2 enters or leaves the surface according to wind speed and

CO2 solubility, as formulated in Wanninkhof (1992). We used a

gas exchange proportionality constant of a = 0.337 taken from

OCMIP-II (Orr et al., 1999) when calculating Kw . Surface wind

speed for the calculation of Kw was the sum of 10-day aver-

ages of 6-hourly squared wind speed (u2
10) and 6-hourly wind

speed variance (σ 2
u10

). Here, u10 indicates wind speed at 10 m

height. An index for polar ice-caps was used to partially mask

the air–sea gas exchange during sea-ice conditions. This was

achieved by compiling a spatial map of the ice index, with val-

ues vary between 0.2 and 1, as taken from the OCMIP-II data

set (Orr et al., 1999).

2.3. Biological model

The ecosystem model employed here is derived from

McKinley et al. (2004). In the present model, net export pro-

duction in the euphotic zone was calculated from climatological

maps of phosphate (P) and light availability (I). An important

difference between the present biological model and that of

McKinley et al. (2004) is that we used monthly climatological

phosphate to determine export production, whereas McKinley

et al. transported phosphate and oxygen as two additional prog-

nostic tracers. Given that McKinley et al. (2004) restored the

biogeochemical tracers below 1200 m depth to observed clima-

tology, our use of climatological phosphate means that the two

studies show similar features below this depth.

A scaling factor was given as a regional mask (α), which

implicitly represented the Fe limitation, grazing efficiency and

recycling. Export production in the euphotic zone (0–140 m) is

formulated as

B(z) = −α(x, y)

(

I(x,y,z,12−month)

I(x,y,z,12−month) + I0

)

×

(

P(x,y,z,12−month)

P(x,y,z,12−month) + P0

)

, (1)

where α represents other controlling factors of export rates.

The value of the maximum export rate, α, encapsulates all the

processes leading to the export of DIC which were not explicitly

represented by phosphate and light limitation (McKinley et al.,

2004). In this case, the value of α should be consistent with the

models circulation and climatological nutrient fields. The global

ocean was divided into 14 regions and the value of α in each

region was defined based on the assumption that a given model

flow field will produce an annual mean phosphorus distribution

consistent with climatological observations. The oceanic regions

for the α mask were taken from McKinley et al. (2004), whereas

the individual regional values of α were tuned for the circulation

used in this study. Because we do not transport phosphate in

the present model, we achieved an optimal α mask by tuning

the individual regional values of α to obtain model pCO2 values

similar to the climatology of Takahashi et al. (2009).

The half-saturation values for phosphate (P0) and light (I0)

were set to 0.01 µmol kg−1 and 30 W m−2, respectively, which

are the same values as those used in McKinley et al. (2004).

Fluxes of sinking particles [F(z)] were parameterized as in

Dutkiewicz et al. (2001). The net export production was con-

verted to an equivalent DIC consumption in the euphotic zone,

based on the Redfield ratio, RC:P = 117:1 (McKinley et al.,

2004). Within the euphotic zone, Sb(z) = B(z) + F(z); below the

euphotic zone, Sb = F(z).

The use of climatological P(x,y,z,12−month) may have a detri-

mental effect on the predicted pCO2 because of the absence of

interannual variability of export production in our model. One

may interpret that those areas in the ocean where our simplified

parameterization would influence the predicted pCO2 are those
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areas with P values similar to or less than the half-saturation

coefficient P0. In these regions, export production depends on

P/P0. Climatological phosphate is already in balance between

the supply of P from the bottom layer and deposition of P by

removal from organic matter. We compared the air–sea CO2

fluxes from our model (non-assimilated run) with those reported

by McKinley et al. (2004), revealing that they are well correlated

over a seasonal cycle as well as regarding interannual variability

[see also Fig. 3.12 in Maksyutov et al. (2010) for a comparison

of the seasonal cycle]. Except for equatorial regions and to some

extent the North Atlantic, we obtained a statistically significant

correlation between the air–sea CO2 fluxes of the present study

and of McKinley et al. (2004).

In addition to air–sea gas exchange, the surface dilution of

DIC by rainfall (P) and its concentration by evaporation (E) were

included in the model (8FWEX). Although the models surface

boundary condition is kinematic, we have given an additional

estimate of surface dilution to compensate for salinity errors (and

corresponding alkalinity errors in the model) in the reanalysis

ocean data (Whit Anderson, 2008, personal communication). In

this case, to eliminate the net addition of DIC due to virtual

fluxes, we subtracted the global mean of P-E before computing

the virtual fluxes. This protocol is taken from OCMIP-II. The

data for virtual dilution were derived from the same reanalysis

data. Therefore, the total (i.e. physical, chemical and biological)

components of the model have the following form:

D[DIC]

Dt
= RC:P × Sb(z) + φGASEX + φFWEX, (2)

where D[DIC]

Dt
represents the total changes due to advection, mix-

ing, diffusion and eddy-induced transport.

2.4. Data and model setup

We used the ocean reanalysis data prepared by GFDL as the

physical driver of OTTM. These data were produced by Modular

Ocean Model-4 (MOM4) forced with Coordinated Ocean Re-

search Experiments (CORE) data sets (Large and Yeager, 2008)

and with an assimilation of in situ temperature profiles from the

National Oceanographic Data Center (NODC) archives using

a 3D variational scheme (see http://www.gfdl.noaa.gov/ocean-

data-assimilation). Details of the physical part of the ocean

model can be found in Delworth et al. (2006) and Gnanade-

sikan et al. (2006).

The physical parameters borrowed from the reanalysis data

are velocity (u, v), temperature, salinity, mixed layer depth, evap-

oration and precipitation rates, surface heat flux, surface wind

stress (to derive vertical mixing) and sea surface height. The

reanalysis data have a zonal resolution of 1◦ with a total of 360

grid points. Meridional resolution is 1◦ at higher latitudes and

0.8◦ in the tropics, with a total of 200 grid points. The data have

50 vertical levels with a 10 m increment in the upper 225 m and

stretched vertical intervals below this layer. The study domain

extends from 81.5◦S to 85.5◦N. The reanalysis data are available

for each month between 1960 and 2004. Physical variables at

monthly time scales were interpolated into the models time-step

of 2 h.

The physical and biogeochemical model was run for the mean

state of DIC (pre-run) using a 12-month mean circulation and

other physical parameters derived for the 10 yr between 1975

and 1984. We chose this period for deriving the mean circula-

tion and other physical parameters for the pre-run because our

interannual DIC simulation started from 1980. Thus, 12-month

mean circulations derived between 1975 and 1984 are expected

to yield a reasonable mean state of DIC.

The pre-run of the model was initialized with annual mean

values of DIC derived from the GLODAP data set (Key et al.,

2004). For the pre-run, surface wind speed and its variance for the

air–sea gas exchange calculation were kept as climatological val-

ues. We took these climatological data from the OCMIP-II forc-

ing database (available at http://www.ipsl.jussieu.fr/OCMIP/).

The data were derived from a 5-year average of SSMI monthly

squared wind speed and 30-day variance of the instanta-

neous wind speed from the corresponding monthly period

(see also README.satdat provided by OCMIP-II, available at

http://www.ipsl.jussieu.fr/OCMIP/).

Surface wind-speed data for the air–sea gas exchange calcula-

tions in the interannual run (Section 2.2) were taken from ERA-

40 (Uppala et al., 2004). We note that the physical circulation

used in this study is produced by forcing with optimal surface

fluxes derived from CORE, which takes most of its atmospheric

data from NCEP/NCAR. However, in CORE data, the NCEP

winds are modified with QSCAT satellite winds to eliminate bi-

ases (Large and Yeager, 2008). Similarly, other components of

the surface fluxes in the CORE data are corrected with available

satellite measurements. Therefore, CORE is an optimal surface

flux combined from various sources, and the offline circulation

used in our study does not restrict us from using ERA-40 winds

for the air–sea CO2 flux calculation.

The pre-run was carried out for 20 years using monthly mean

circulation. The monthly mean wind for the surface gas exchange

calculations was repeated at each year of the pre-run. The surface

DIC concentration and air–sea CO2 flux of the model reached

a quasi-equilibrium state at the end of the first 10 years of the

pre-run and thereafter showed a minimum departure from the

mean state. The global integral of CO2 flux from the model was

1.3 PgC yr−1 in the first year of the spin-up and 2.25 PgC yr−1 at

the end of 9 year. Therefore, the estimated drift in the first 9 years

of spin-up is approximately 0.1 PgC yr−1. After 16 years, the

model CO2 flux reached 2.35 PgC yr−1. Therefore, the drift be-

tween 10 and 16 years is 0.014 PgC yr−1, which represents 14%

of the drift during the first 10 years of spin-up. From 16 years

onward, the model CO2 flux remained close to 2.35 PgC yr−1.

Although the surface CO2 flux reached a quasi-equilibrium state

after a 20-year spin-up, deeper adjustments (below 2000 m) con-

tinued because of the slow communication between surface and
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subsurface ocean via deep convection. Moreover, re-mineralized

DIC below 2000 m depth communicated with the surface on a

time-scale longer than 20 years. However, such deep and slow

adjustments are unlikely to influence the present results because

of the short period of our analysis and the component of assim-

ilation involved.

The average of the last 5 years of the pre-run was taken as the

restart condition for the interannual simulation. The simulation

was started with the restart condition and continued through

the monthly fields for the year 1980. The simulation was then

continued from 1980 to 1995 using real-time data. The model

results deviated from the restart condition as soon as the data

for 1980 were introduced. A near-steady-state was reached by

the time the model had passed through the fields for the year

1980. The restart condition for January 1996 was used for the

experimental runs.

We analysed the pre-run and interannual-run pCO2 and

air–sea CO2 fluxes, and calculated the correlations with the ob-

servations reported by Takahashi et al. (2007) and Takahashi

et al. (2009). Model performance was reasonable on seasonal to

interannual time scales. The pre-run and interannual-run results

are basically similar to those of McKinley et al. (2004).

2.5. Constraining the model pCO2 using observations

The use of a simple biogeochemical model, in which biological

and chemical cycles of CO2 are related to a single tracer (DIC),

simplified the construction of adjoint equations for the assimi-

lation. These adjoints are used to constrain model pCO2 to the

corresponding observations. A variational assimilation method

was used to minimize the cost function. We employed a descen-

dant algorithm technique similar to that described by Ikeda and

Sasai (2000). The assimilation involves the following steps.

(a) The forward model is run through an assimilation win-

dow of 2 months, starting from the initial condition. A 2-month

window was chosen because the surface pCO2 shows rapid equi-

libration with the atmosphere. Therefore, the adjoint has rela-

tively negligible magnitude to correct the initial condition in

a longer backward integration. The surface ocean pCO2, DIC

and other variables are saved along the ship observation tracks.

The corresponding global-scale variables are saved at monthly

intervals.

(b) The observation-model misfit values are run backward

in a time–space domain in the adjoint simulation, which starts

from the end point of day-60 and ends at day-1. We used a sim-

ple adjoint of physical circulation by reversing the direction of

the offline currents and integrated the model backward in time

while the direction of mixing and diffusion remained unchanged.

This adjoint method is similar to that discussed previously by

Fukumori et al. (2004), Hourdin and Talagrand (2002) and Hour-

din et al. (2002). The adjoint model contains only one control

variable: DIC. The surface ocean pCO2 observations are con-

verted into equivalent CO2 concentrations using model sea sur-

face temperature (SST), sea surface salinity (SSS) and alkalinity,

all of which are reanalysis offline input data. The cost function

was chosen to be the squared difference between the data and

modelled pCO2, as follows:

J = w16(pCO2 − pCO2ST)2 + w26(pCO2 − pCO2CL)2,

(3)

where pCO2ST denotes the ship-track pCO2 data and pCO2CL

denotes the climatology of Takahashi et al. (2009). The weight-

ing w1 was kept equal to 1.

In addition to the along-track pCO2 data, we used the monthly

mean surface ocean pCO2 derived from Takahashi et al. (2009)

as an additional constraint. However, the weighting for this mean

constraint (w2) was retained only up to 20% of the weighting of

the along-ship-track data assimilation. Moreover, the weighting

for this mean constraint was spatially varied according to the

inverse variance (σ 2) of the model interannual CO2 flux vari-

ability, which we inferred from our forward model simulation

for 1980–1995. This spatially varying weighting helped to con-

strain the model to the mean pCO2 only in regions where the

interannual variance was minimized. Thus, regions with higher

interannual variability in pCO2 (e.g., the eastern equatorial Pa-

cific) were constrained only when ship-track data were avail-

able. Therefore, w2 in the above equation is assumed the form

min(0.2, σmin/σ ) in which σ min = 0.02 (mole m−2 yr−1)2. A map

of w2 is shown in Fig. 5 (bottom panel).

The adjoint equations are deduced from

−
λn − λn−1

1t
+ w1

δnn

1t
fg(pCO2 − pCO2ST)

+ w2

δnn

1t
fg(pCO2 − pCO2CL) +

∂Fn

∂C
= 0, (4)

where the adjoint operator λ at nth time-step is given as

λn = Wf

(

Cn+1 − Cn

1t
− Fn

)

, (5)

where Cn is the control variable at the nth time step, Wf is

a weighting coefficient, and Fn is forcing, including CO2 gas

exchange, virtual fluxes and biological export of DIC. fg is a

conversion factor for converting pCO2 to DIC using SST, SSS

and alkalinity (Weiss, 1974). The last term in eq. (4) represents

the derivative of forcing with respect to the control variable, as

follows:

∂FN

∂C
= λnKwK

[

(2C − A)(3A − 2C)

(A − C)2

]

+ λnB(z) + λn(E − P ), (6)

where A represents alkalinity, K is a CO2 solubility coefficient

(Weiss, 1974) and B(z) is derived from eq. (1). The first term

on the right side of eq. (6) represents the derivative of the pCO2

formulation with respect to DIC.

(c) The cost function is minimized using a descendant al-

gorithm in which at each iteration, the initial condition is
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corrected by the gradient of the cost function (Bennett, 2002).

The weighted correction to the forcing in the assimilation run

incorporates corrections to DIC induced as a combination of

corrections to the biology and other surface fluxes such as fresh

water and salt errors. However, these corrections are not sepa-

rable because we use only one control variable (eqs 3–6). The

iteration is repeated until the along-track model-to-observation

misfit of pCO2 is minimized below a threshold, defined as the

iteration at which the cost function falls below 10% of the initial

value.

The model was restarted from January 1996 and pCO2 was

synthesised for a monthly period with an iteration window of

2 months. The whole procedure was repeated every 2 months

within the assimilation period.

3. Simulation and synthesis of pCO2

3.1. pCO2 data

The number of surface pCO2 ship observations has expanded

considerably since 1995. In Takahashi et al. (2007), compila-

tion of global ocean pCO2 database, approximately 3 × 105

quality-controlled observations were used. This study made use

of Takahashi et al. (2007) data (Version 1.0) as ship-track pCO2

data (i.e. pCO2ST in eq. 3). In addition to the research ves-

sels participating in pCO2 measurements, Ship-Of-Opportunity

measurements made by cargo liners have provided a wealth of

information about the surface ocean pCO2, especially in regions

such as the North Pacific (Zeng et al., 2002) and North Atlantic.

Sampling density in the Southern Ocean has been improved in

Version 1.0 pCO2 data (Takahashi et al., 2007) compared to the

older versions. Figure 1 summarizes the pCO2 observation points

used in this study, comprising 236 777 observations between

1996 and 2004. Although not all data in Takahashi et al. (2007)

database are sampled along ship tracks (some are from station-

data sampled on research cruises), we use the term ‘ship-track’

to represent individual pCO2 observations taken from Takahashi

et al. (2007) database.

The pCO2CL in eq. (3) is taken from Takahashi et al. (2009).

Here we note that, there are following inconsistencies exist (in-

herited from the Takahashi et al., 2007) in the pCO2 data that

used in this study. (1) Different corrections were applied to

13 981 observations from the southern Indian Ocean lines col-

lected between 1998 and 2000 (file name “OISO” in the LDEO

database), which were subjected to a repeated (twice) SST cor-

rection in the Version 1.0 of Takahashi et al. (2007). The average

error caused by this discrepancy is −9.27 ± 3.43 µatm. (2) In all

OISO data files, only CO2 fugacity (f CO2) values are reported

without pCO2 values or CO2 concentrations in dry equilibrated

gas. The approximate formula for the conversion of f CO2 to

pCO2 yields pCO2 values greater than f CO2 by about 1.3 µatm.

These two uncertainties were common for both ship-track data

and the climatology mean used here. (3) There is a slight change

in pCO2 interpolation near the meridian, which generates an

error of less than 10 µatm in several grid points around 0◦E in

Takahashi et al. (2009). For this study, we derived the climatolog-

ical mean constraint from Takahashi et al. (2009) and obtained

ship-track data from Takahashi et al. (2007). The magnitude

of data errors is minor compared with the residual error in the

assimilation.

To enable post-assimilation comparisons, we combined

Takahashi et al. (2007) pCO2 data into 1◦ × 1◦ bins. This ap-

proach leaves gaps in regions for which no observations are

available, especially in the southern sub-tropical regions of all

the major oceans and in the Southern Ocean. The North Atlantic

and North Pacific have the largest number of observations. We

Fig. 1. Total number of ship observations

and tracks used in the assimilation of surface

ocean pCO2 in the model. A total of 236 777

observations are used from Takahashi et al.

(2007) database.
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Fig. 2. (Top panel) 1980–1995 mean model

simulated surface ocean pCO2 in the free run

and (bottom) observations from Takahashi

et al. (2007) regridded into 1◦×1◦ bins. The

free run refers to the non-assimilated

interannual simulation from 1980 to 1995.

Units are in µatm.

compared this 1◦ × 1◦ pCO2 data set with our model and syn-

thesized pCO2 results to assess errors and biases.

3.2. Model pCO2 error

The free-run of the model produced patterns of global mean sur-

face ocean pCO2 that are consistent with observations (Fig. 2).

Here, the free-run refers to interannual model simulations with-

out any constraint on surface ocean pCO2. Figure 2 shows the

annual mean pCO2 of the model for the period 1980–1995.

The free-run performs reasonably well in representing the ele-

vated pCO2 in the tropical Pacific and depressed pCO2 in the

Southern Ocean and North Atlantic. However, the modelled

pCO2 contains regional-scale errors in magnitude and in phase.

For example, pCO2 in the tropical Atlantic is overestimated

in the free-run compared with the observations of Takahashi

et al. (2007) (Fig. 2, bottom panel). The North Pacific has a

limited springtime bloom related reduced pCO2 in the free-

run compared with observations. In the Indian Ocean, the Ara-

bian Sea is poorly represented and biased toward a reduced

pCO2.

Figure 3 shows the misfit between the annual mean pCO2

of the free-run and the observations of Takahashi et al. (2007).

Here, errors are calculated as the difference between the annual

mean pCO2 of the free-run and the corresponding mean from the

observations of Takahashi et al. (2007). Large errors are found

in the tropical Atlantic, North Atlantic, Northwest Pacific and

Indian Ocean (Fig. 3, top panel). In the southern subtropics,

however, model bias cannot be assessed because of a lack of

observed data.

The annual mean error does not capture the seasonal drift in

model pCO2 from observations. To show the total error arising

from seasonal biases in the model, we calculated the sum of

the absolute misfit of free-run pCO2 during each month from

January to December (Fig. 3, bottom panel), compared with the

observations of Takahashi et al. (2007).
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Fig. 3. (Top panel) Annual mean error of

model pCO2 compared to the observations

of Takahashi et al. (2007). (Bottom panel)

The sum of monthly error calculated as

(612
l=1[pCO2mod–pCO2obs]). Units are in

µatm.

The cumulated seasonal error in the model pCO2 is large in the

subarctic North Pacific and North Atlantic, which is not apparent

in the annual mean error. The seasonal bias is also strong in the

tropical Atlantic and eastern tropical Pacific, contributing to the

annual mean error. The largest error in the seasonal cycle is

observed in the North Pacific.

The lack of a one-to-one correspondence between regional-

scale observed and simulated surface ocean pCO2 may reflect the

limited and simplified representation of the ecosystem model,

which is inefficient in resolving processes such as spring bloom

and variability in the euphotic zone. This limitation is reflected in

errors in the northeastern Pacific and Arabian Sea, and may ex-

plain the errors and biases in the model. Given that our ecosystem

model has only one component, the seasonal cycle of biology

is not well represented. Moreover, the α values used to obtain

export production are too coarse to represent the complete fea-

tures of the regional ecosystem. For example, Fig. 4 compares

the pCO2 seasonal cycle of our free-run and that of Takahashi

et al. (2009) (black and green lines, respectively), averaged over

each of the 14 α regions used in the export production calcu-

lation (see also Section 2.3). The subdivisions are the same as

those used in table 1 of McKinley et al. (2004). In the present

free-run, the tropical to mid-latitude oceans have a reasonable

seasonal cycle of pCO2, although biases are apparent. For ex-

ample, the seasonal biases in the equatorial Atlantic and Indian

Ocean are about 25 µatm. Good agreement between the free-run

and the observed pCO2 seasonal cycle is found for the subtropi-

cal South Pacific, subtropical South Atlantic, eastern equatorial

Pacific, western equatorial Pacific, subtropical North Pacific and

subtropical North Atlantic. However, the model performance is

poor in high-latitude oceans (e.g. subpolar North Pacific and

subpolar North Atlantic). The free-run seasonal cycle of pCO2

of the Southern Ocean is in phase with observations, although

with relatively weak amplitudes.

In addition to the limitations of the ecosystem model, which

explain some of the discrepancies between the model and
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Fig. 4. Seasonal cycle of pCO2 from 14

α-regions of the biological model are shown.

Three lines are shown and they are from the

model (black line), Takahashi et al. (2009)

(green-line) and the assimilation (red-line).

Units are in µatm.

observations, other sources of errors are likely to be associ-

ated with biases in surface salt and fresh water fluxes. A more

important source of error, especially at high latitudes, arises

from alkalinity. The simple linear relation between alkalinity

and salinity does not incorporate regional differences in the

alkalinity–salinity relation, as noted by Lee et al. (2006). A

comparison of the present alkalinity maps with the map pro-

vided by Lee et al. (2006), for the 14 regions described earlier,

reveals discrepancies in the seasonal cycle of alkalinity at high

latitudes. Note that the present model used the alkalinity–salinity

relation from OCMIP-II.

3.3. Constraining the surface pCO2

The upper panel in Fig. 5 shows the interannual variance of

air–sea CO2 flux as resolved in the 16-year period of the free-run.

The inverse of this map is normalized to vary between zero and

0.2, and is used for the weighting coefficients (w2) as a constraint

on monthly mean pCO2 (Fig. 5, bottom panel; see also Section

2.5). This approach guarantees the following conditions: (1) the

model biases in the mean seasonal cycle are reduced because

the pCO2 is constrained to a mean cycle, and (2) interannual

variability in modelled pCO2 is relatively weakly influenced by
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Fig. 5. (Top panel) 1980–1995 interannual

variance of air–sea CO2 flux. Variance is

calculated after subtracting the monthly

climatology. Units are in (mole m−2 yr−1)2.

(Bottom panel) The weight w2 used for the

climatological constraint (non-dimensional).

this mean constraint because of the inverse variance weighting

map employed in this study.

We verified the influence of the climatological constraint on

the fit of modelled data to observations along ship tracks. The

assimilation was run by switching off the climatological data

constraint. The results are analysed for regions with the greatest

coverage of data. In the case of no climatological constraint, the

cost function along the ship track is reduced by 10% compared

with the case of a climatological constraint. The remaining er-

ror in the assimilated pCO2 values due to the climatological

constraint is less than 10 µatm.

The assimilation is run from 1996 to 2004, yielding monthly

pCO2 and air–sea CO2 flux. The only assimilation in the system

is performed for pCO2. Air–sea fluxes are calculated from the

assimilated pCO2 and gas exchange coefficients. We refer to

this calculated air–sea gas exchange as ‘assimilated air–sea CO2

flux’.

Figure 6 summarizes the assimilated pCO2 annual mean cal-

culated between 1996 and 2004, as well as the observation data

reported by Takahashi et al. (2007). The assimilation resulted

in reduced amplitude errors in annual mean pCO2. The regional

variability of pCO2 is better represented in the assimilation com-

pared with the free-run (cf. Fig. 1). The elevated amplitudes of

pCO2 in the eastern tropical Pacific are regulated in the assim-

ilation compared with the free-run. The errors in the northern

Pacific and Atlantic Ocean are improved in the assimilation, as

is the regional pCO2 distribution in the Southern Ocean.

Figure 7 summarizes the total error remaining in the assim-

ilation compared with the observations reported by Takahashi

et al. (2007). Compared with the free-run, an improvement is

apparent in the seasonal pCO2 of the subarctic North Pacific (cf.

Fig. 3). This part of the ocean has a dense coverage of pCO2

sampling contributed by Ship-Of-Opportunity measurements in

which the instruments are attached to commercial vessels op-

erating between Japan and North America, and among other

Asia-Pacific countries. This wealth of information is readily as-

similated into the model, resulting in a marked reduction in

errors. Thus, the assimilation performed well in constraining the
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Fig. 6. (Top panel) 1996–2004 mean

assimilated surface ocean pCO2 and (bottom

panel) observations from Takahashi et al.

(2007) regridded into 1◦ × 1◦ bins. Units are

in µatm.

model, especially in regions where large amounts of observation

data are available.

A comparison of Figs 3 and 7 shows that error reduction in

the assimilation is concentrated in the tropical Atlantic, northern

Pacific, northern Atlantic and equatorial Pacific. In the eastern

equatorial Pacific, however, observations are limited and do not

cover a long enough period to resolve interannual variability

related to ENSO. Moreover, in this region our model employed

only a minimum constraint on the mean pCO2, depending on the

inverse variance map used for weighting. Thus, the amplitude

mismatch remains in this region, compared with the data in

Takahashi et al. (2007), reflecting interannual signals rather than

the residual error of the model.

Figure 4 also compares assimilated pCO2 as average values

derived from the 14 regions used in the biological export calcu-

lation (Section 3.2). The assimilation contributed to correcting

the phase of the seasonal cycle and resulted in reduced bias;

remarkable improvements are seen at high latitudes. For exam-

ple, the assimilation corrected the seasonal cycle of the sub-polar

North Pacific, because of the large amount of data incorporated

from this region. However, the seasonal cycle of the sub-polar

North Atlantic was only corrected to a small degree. The LDEO

ship-track database (Version 1.0; Takahashi et al., 2007) has not

incorporated all the available pCO2 observations from the North

Atlantic.

Figure 8 summarizes the percentage reduction of error in an-

nual mean and seasonal pCO2 in the assimilation, with respect

to the total error in the free-run. The error reductions are cal-

culated as the difference between the free-run error (i.e. Fig. 3)

and residual error (i.e. Fig. 7), expressed as a ratio relative to

the free-run error. A positive value indicates that the assimila-

tion has improved the model pCO2 values, with respect to the

observed data provided by Takahashi et al. (2007). Sixty percent

of the annual mean model biases are eliminated in the assimila-

tion. Forty to sixty percent of the cumulative seasonal errors are

also minimized at a regional scale. Marked reductions in error

are seen in the tropical Atlantic and North Pacific. In the Indian

Ocean, the errors are reduced in both the seasonal and annual
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Fig. 7. Same as Fig. 3, but for assimilated

run.

mean pCO2. However, the density of observation tracks within

the Indian Ocean is less than that in other oceans.

There are few locations for which the assimilation results in an

increase in model pCO2 error (e.g., regions of the eastern equa-

torial Pacific). However, large interannual variations in pCO2

remain in such regions (Fig. 7).

3.4. Conservation of DIC in the assimilation

Here, we consider the following question: To what degree does

the adjoint disturb the total balance of globally integrated DIC

in the model? The cost function is designed based on the surface

ocean pCO2 mismatch, whereas DIC is adjusted to minimize the

cost function. In this case, it is instructive to assess whether the

adjoint introduced any DIC imbalance in the model. The only

permissible change in DIC within the model is at the surface,

via air–sea gas exchange. Although we disturbed the total DIC

in the ocean via adjoints, we optimized the near-surface pCO2

according to observations, which probably resulted in air–sea

fluxes of the desired directions and magnitude. This approach

serves the purpose of our assimilation system, which is designed

to optimally estimate the net air–sea CO2 fluxes. The imbalance

of DIC produced in the ocean by the adjoints can be considered

as corrections to biases in model circulation. In fact, the initial

condition taken from GLODAP contains biases, and the model

seeks to attain its own equilibrium via the given biogeochemical

cycle and transport. In this case, the adjoints compensate for the

mismatch in surface ocean DIC (at least at distances for which

the adjoints can reach in a 2-month iteration) that originates from

the mismatch between modelled and observed pCO2.

To quantify the model DIC budget and its variations, we cal-

culated the global average DIC concentration (the weighted av-

erage in the x, y and z directions) from our assimilation and com-

pared it with area-integrated global air–sea CO2 fluxes (Fig. 9).

The global DIC concentration varies in proportion to the air–sea

CO2 flux. When the air–sea flux is toward the ocean, the DIC

concentration increases, and vice versa. This relation is equally

apparent in the seasonal cycle (top panel in Fig. 9) and in
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Fig. 8. (Top panel) Percentage error

reduction calculated as (ǫf − ǫa)/ǫf

for the annual mean pCO2, where

ǫ = (pCO2mod − pCO2obs) and ǫf and ǫa

corresponds to the error in the free and

assimilated run, respectively. (Bottom panel)

Same as the top panel but for seasonal cycle

in which

ǫ = (612
l=1abs[pCO2mod-pCO2obs]).

interannual variability (bottom panel). The interannual variabil-

ity of total DIC shows a positive trend from 1998, which can be

interpreted as being proportional to increasing CO2 in the atmo-

sphere and a subsequent increase in oceanic DIC. Although the

atmospheric CO2 was fixed at a constant value in the model,

the component of data assimilation could include such trends in

the modelled oceanic DIC.

3.5. Assimilated air–sea CO2 flux

The reduction in biases and errors in the synthesized pCO2 would

enhance the quality of air–sea CO2 fluxes retrieved from the

model. The assimilated CO2 flux shows an annual mean sink

of 1.48 PgC yr−1 (1996–2004). The corresponding value from

Takahashi et al. (2009) is an annual mean sink of 1.41 PgC yr−1.

Thus, the assimilated estimate is closer to the estimate based on

observations of Takahashi et al. (2009).

Except for regions of marked interannual variability, the sea-

sonal cycle of the assimilated air–sea CO2 flux shows a strong

correlation with observed data (Fig. 10). The majority of areas

in tropical to high-latitude oceans shows a seasonal correlation

above 0.8 (above the 99% level of significance). Biases remain in

the assimilation for the equatorial Pacific and Arabian Sea, com-

pared with observations. The Indian Ocean has the poorest cov-

erage of pCO2 measurements; consequently, the assimilation did

not yield any considerable improvements in this region. There

are limited observations in the equatorial Pacific with which to

calculate the interannual signal; thus, the poor correlation be-

tween the seasonal cycle in this region and the observations of

Takahashi et al. (2009) does not reflect the models inability; in

fact, it may have originated from interannual variability.

The global integral of seasonal CO2 flux in the assimilation

has a minimum sink during June, compared with August and

September in the observations presented by Takahashi et al.

(2009). The Southern Ocean shows a major phase mismatch

in the assimilation, especially during the austral summer. The

model performs poorly in representing the sink observed during

the austral summer, which may reflect the limitations of the
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Fig. 9. (Top panel) Globally averaged (weighted average along x-, y- and z-directions) DIC concentrations (full line) and globally integrated air–sea

CO2 fluxes (dash line). Both are from the assimilation. (Bottom panel) Same as top, but for seasonal cycle removed.

ecosystem model regarding the biological cycle. However,

the annual mean of the assimilation shows a net sink, as found

in the observation data. The mean sink in the Southern Ocean

(south of 40◦S) in the assimilation is −0.41 PgC yr−1; the equiv-

alent figure in Takahashi et al. (2009) is −0.45 PgC yr−1.

Figure 11 (top panel) shows the annual mean CO2 flux from

the assimilation for 1996–2004. The regional patterns of this

flux are consistent with the results shown in Takahashi et al.

(2009), as a result of two factors: (1) the pCO2 track observations

of Takahashi et al. (2007) are fully utilized in the model to

synthesis the surface ocean pCO2, and (2) the monthly mean

map provided by Takahashi et al. (2009) pCO2 is used as a weak

constraint for regions with limited pCO2 observations. However,

the mean constraint was given a weighting of only 20% of the

track assimilation, and it is further masked by the inverse of the

interannual variability of modelled air–sea CO2 flux

3.6. Interannual variability of assimilated CO2 flux

Area-integrated CO2 fluxes from the global ocean and the Niño

region show that the assimilation has weakened the strength of

the interannual variability compared with the atmospheric inver-

sions of Patra et al. (2005) and other forward model simulations

(Le Quere et al., 2000; Obata and Kitamura, 2003; McKinley

et al., 2004). This result may reflect the weak constraint of

the model on the monthly mean maps of pCO2, which could

suppress the interannual signals. In addition, the amplitudes of

interannual signals in the assimilation are smaller than those in

the present free-runs. The observation data reported by Feely

et al. (2002) and the inverse modelling of Patra et al. (2005) and

several OGCMs (Le Quere et al., 2000; Obata and Kitamura,

2003; McKinley et al., 2004) show stronger interannual vari-

ability than that obtained in this study. However, the magnitude

of the interannual signal in the OGCM results is only half that

in the atmospheric inversions.

The Niño region shows an interannual anomaly with a mag-

nitude of 0.4 PgC yr−1 during the 1997–1998 and 2003–2004

El Niño events. This is smaller in magnitude than the inver-

sions reported by Patra et al. (2005). The years 2002–2004 were

marked by weak El Niño conditions in the tropical Pacific, and

the CO2 flux anomalies for these years are negative. Thus, the

assimilated CO2 flux anomalies from the eastern tropical Pacific

are consistent with observations, as well as with our general

consensus regarding the evolution of CO2 flux during El Niño

years.

4. Comparison with other data sources

Here, we compare our assimilated air–sea CO2 flux with other

data sources. The following sources are used for the intercom-

parison: the atmospheric inversions reported by Rödenbeck et al.

(2003) (Version s96_v3.1) and Patra et al. (2005), and the bio-

geochemical general circulation model fluxes of Le Quere et al.

(2005). The seasonal cycle of global air–sea CO2 fluxes is com-

pared among these four products, as well as the seasonal cycle
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Fig. 10. (Top panel) Seasonal correlation

coefficients calculated between assimilated

sea–air CO2 fluxes and Takahashi et al.

(2009). The line plots compare the seasonal

cycle of area integrated sea–air CO2 fluxes

from assimilation and Takahashi et al.

(2009).

of air–sea CO2 flux in the North Pacific, because our assimi-

lated CO2 flux data incorporate a large amount of observed data

available from the North Pacific.

The seasonal cycle of globally integrated air–sea CO2 fluxes

differs considerably among the above four products (Fig. 12).

The assimilated fluxes show a minimum sink during the boreal

summer. The seasonal cycle of Le Quere et al. (2005) shows

a minimum sink during September and October, and a maxi-

mum sink during April and May, consistent with the findings

of Takahashi et al. (2009). Among the atmospheric inversions,

Rödenbeck et al. (2003) reported a seasonal cycle that is largely

opposite to that of the present study and to observations. The

oceanic seasonal cycle in the inversion performed by Rödenbeck

et al. (2003) is probably affected by land signals, as such sig-

nals are much larger than oceanic signals and it is generally

difficult to separate the two. Moreover, the Rödenbeck et al.

(2003) inversion does not employ any prior flux for seasonal-

ity. The inversion fluxes reported by Patra et al. (2005) show a

seasonal cycle consistent with that reported by Takahashi et al.

(2009).

The error bars in Fig. 12 show the interannual standard devia-

tions for each month of the year. The interannual amplitudes

are weakest in our assimilated air–sea CO2 fluxes, possibly

because of the weak mean constraint applied to the model. The

standard deviations are comparable between our product and

Le Quere et al. (2005). Interannual variability is greater in the

atmospheric inversions performed by Patra et al. (2005) com-

pared to other products compared here. The inversion fluxes
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Fig. 11. (Top panel) 1996–2004 mean

assimilated sea–air CO2 fluxes. Units are in

mol m−2 yr−1. (Middle panel) Interannual

CO2 fluxes from the global ocean as given

by the assimilation. (Bottom panel) Area

integrated air–sea CO2 flux from the Nino

region (area is shown as box in the top

panel). Dashed line represents a 12-month

running mean.

Fig. 12. Seasonal cycle of global air–sea

CO2 fluxes. Units are in PgC yr−1. The error

bars show the interannual standard

deviations of each month calculated from a

span of 1996–2004. The y-axis varies for

each data product.
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Fig. 13. Same as Fig. 12 but for fluxes from

north Pacific alone.

calculated by Rödenbeck et al. (2003) show the largest interan-

nual amplitudes among the four products.

The seasonal cycle of the North Pacific alone is worth com-

paring because our model benefited from a large number of ob-

servations in this region. Figure 13 shows the integrated air–sea

CO2 fluxes from the four data sources, for the North Pacific

area. The ocean models show comparable seasonal cycles. The

error bars in the figure indicate the interannual standard devia-

tions for each month. The amplitude of the interannual signal

in the North Pacific CO2 flux is weaker in the OGCM of Le

Quere et al. (2005), and is weaker during the boreal summer

in our data product. This finding is consistent among the two

ocean models. Among the atmospheric inversions, Patra et al.

(2005) reported large interannual variability. The seasonal cycle

reported by Patra et al. (2005) is comparable to that in the ocean

models. However, the seasonal cycle in atmospheric inversion

fluxes reported by Rödenbeck et al. (2003) is inconsistent with

that of the other products.

4.1. Intercomparison of interannual variability

This section compares the interannual anomalies of area-

integrated air–sea CO2 fluxes obtained from four data sources.

First, we compare the interannual variability in the North Pacific.

Figure 14 shows a remarkable agreement between the assimi-

lated air–sea CO2 fluxes of the present study and atmospheric

inversions; the cycles of interannual anomalies are in phase in

all cases. The magnitude of interannual CO2 flux anomalies in

the atmospheric inversion reported by Patra et al. (2005) is larger

than those from other products, and is shown in the figure using

a separate y-axis. Except for the relatively high amplitudes in

Patra et al. (2005), the atmospheric inversions generally agree

with the interannual variability of assimilated air–sea CO2

fluxes. The inversion performed by Rödenbeck et al. (2003)

yields a similar interannual cycle to that of the present assimi-

lation, although the seasonal cycles are opposite. Given that the

inversion method employed by Rödenbeck et al. (2003) is linear,

seasonal and interannual variability are possibly independent of

each other, meaning that the comparison of interannual variabil-

ity may be reasonable even if the seasonality is different (C.

Rödenbeck, 2009, personal communications). The comparison

demonstrates that the global atmospheric inversions agree with

the assimilated air–sea CO2 fluxes of the present study. The in-

terannual variability derived from an OGCM by Le Quere et al.

(2005), in contrast, is weak and out of phase compared with the

other data sources.

Figure 15 compares the globally integrated air–sea CO2 flux

interannual anomalies between three products: the assimilated

air–sea CO2 fluxes of the present study, the atmospheric inver-

sions of Rödenbeck et al. (2003), and OGCM results presented

by Le Quere et al. (2005). We excluded Patra et al. (2005) from

this comparison because of the relatively large amplitude of the

Fig. 14. Interannual variabilities of the north

Pacific area integrated air–sea CO2 flux

anomalies derived from the four data sets.
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Fig. 15. Same as Fig. 14 but for global

anomalies.

anomalies in their study. The three data products show compa-

rable interannual variability (both in magnitude and phase). The

assimilation system of the present study agrees with the atmo-

spheric inversions on interannual scales. The assimilated fluxes

offer a better comparison with atmospheric inversions than do

the OGCM results of Le Quere et al. (2005).

5. Discussion and Conclusion

This study differs from previous attempts at modelling of the

ocean carbon cycle in the following key aspects. (1) We used

an offline tracer transport model for physical circulation, which

uses observationally constrained reanalysis data products. This

approach performs well in representing carbon transport in the

ocean. (2) The ecosystem model, although a simple model de-

rived from McKinley et al. (2004), is acceptable in terms of

representing interannual variability in air–sea CO2 fluxes and

was implemented to constrain values of surface ocean pCO2

with available observations. (3) The assimilation resulted in im-

proved model performance, yielding a reduction in systematic

biases and errors. (4) An intercomparison of the present data

product with atmospheric inversions revealed reasonable agree-

ment in the interannual variability of air–sea fluxes. (5) Ulti-

mately, we obtained an observationally constrained air–sea CO2

flux on an interannual time scale for the global ocean.

The use of reanalysis physical circulation enables us to extend

the assimilated CO2 flux data in a near-real-time basis. This ap-

proach provides a wealth of information in terms of ocean flux

priors for upcoming atmospheric inversions using CO2 measure-

ments made by the on-board instrument attached to GOSAT.

Thus, the proposed model has the potential to contribute inter-

annually varying near-real-time ocean flux priors, constrained

by available observations of pCO2 and with reduced bias, for

near-real-time atmospheric inversions.

The proposed model can be used to set up for the operational

forecasts of CO2 fluxes, depending on the availability of oper-

ational ocean circulation. The recent increase in the amount of

pCO2 observation data is helpful in setting up this model for

operational forecasts of CO2 fluxes. Moreover, autonomous in-

struments such as Argo may contain sensors for DIC and pCO2

in the future. In such a case, the proposed model could be used

to provide continuously updated, observationally constrained

air–sea CO2 flux data.

5.1. Limitations

The method used to constrain values of surface ocean pCO2 con-

tains a few uncertainties. Accordingly, we discuss the limitations

of the present system, with a view to improving the proposed

CO2 assimilation system.

First, the model uses only one adjoint, meaning that the con-

trol variable (DIC) is corrected irrespective of the source of

errors. This assimilation system considers that DIC determines

the surface ocean pCO2 in the model, given that SST, SSS and

surface alkalinity are close to observed values. However, this

assumption has caveat because errors may occur in these vari-

ables even though they are derived from the reanalysis offline

inputs. The modelled DIC is corrected to match pCO2 values

with observations; however, there exists little guidance regard-

ing whether the correction is in the desired direction. To verify

that the corrections applied to DIC are valid, we compared the

assimilated DIC with observations in several sectors of the Pa-

cific. In most cases, the assimilation corrected the DIC in the

desired direction. As an example, Fig. 16 shows the surface

ocean DIC from three cruises carried out in the North Pacific.

The figure compares the assimilated DIC of the surface ocean

with observations, revealing a reasonable agreement.

Another limitation of the system is the short term (2 months)

of the assimilation windows. We found that the adjoint loses its

sensitivity in longer backward runs. Here, the data are considered

only at the surface ocean, where vertical mixing is maximized.

Therefore, the model-data misfit shows a relatively rapid down-

ward “dilution”. During the 2-month period of adjoint runs, the

sensitivities are not propagated to depths greater than the eu-

photic zone. Therefore, the correction applied to the surface

ocean DIC is confined to within 100 m of the surface ocean.

This limits the assimilation system in terms of using surface

ocean pCO2 observations to eliminate errors in simulated DIC

below 100 m depth. However, we cannot be sure that surface

ocean pCO2 is indeed controlled by deep DIC. Vertical mixing

plays a crucial role in bringing the subsurface DIC signal to

the surface and thereby influencing pCO2. However, the present
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Fig. 16. (a) Three cruises from the western

north Pacific which sampled the surface

ocean DIC. (b–d) Comparison of observed

(black) and assimilated (colour) DIC

concentrations. Units are in mole m−3.

assimilation system only considers corrections that are possible

within the distance across which adjoints can propagate in a

2-month iteration. Moreover, DIC is a non-conservative tracer,

which may contribute to the weak sensitivity of adjoints to the

longer backward integration.

Although the present method has limitations, it represents

an important step toward additional future improvements. The

incorporation of satellite-derived chlorophyll-a data into the as-

similation would be a promising future step, along with ex-

panding the ecosystem model to include the full dynamics of

alkalinity.
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